
Spontaneous Scalarization of Black Holes in
Gauss-Bonnet Teleparallel Gravity

Sebastián Bahamonde

JSPS Postdoctoral Researcher at Tokyo Institute of Technology, Japan

Canadian Quantum Research Center;
arXiv:2212.07653 and our review Rept. Prog. Phys. 86 (2023) no.2, 026901

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 1 / 42



Overview of the Talk

1 Introduction to Teleparallel theories of gravity
Basic mathematical ingredients
Trinity of gravity

2 Black hole hair and Riemannian extensions of GR
No-hair theorem and a scalar field theory non-minimally coupled
to the Ricci scalar
Scalar-Gauss Bonnet gravity

3 Teleparallel scalar Gauss-Bonnet gravity
Scalar field non-minimally coupled to Torsion
Teleparallel scalar Gauss-Bonnet
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Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̂ρµν (64
comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

Γ̂λ µν =

Levi-Civita︷ ︸︸ ︷
Γ̊λ µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ µν − T(µ

λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ µν −Q(µ

λ
ν) , (1)

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ
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Tetrads and spin connection

Notation: µ, ν, α, ..: space-time; a, b, c, ..: tangent space.
Γ̊: Levi-Civita, Γ: Teleparallel connection;Γ̃: General connection.

Tetrads (or vierbein) eaµ are linear basis on the spacetime manifold,
and at each point of the spacetime, tetrads gives us basis for vectors
on the tangent space.
Tetrads satisfy the orthogonality condition; emµenµ = δnm and
em

νemµ = δνµ and the metric and its inverse can be reconstructed via

Metric and tetrads

gµν = ηabe
a
µe
b
ν , gµν = ηabea

µeb
ν

where ηab is the Minkowski metric.
Quantities denoted with a circle on top ◦ denote that they are defined
with respect to the Levi-Civita connection and hats are general affine
connection.
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Trinity of gravity - curvature tensor

The curvature becomes

R̃µνρσ = R̊µνρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρµρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µ(

√−gT ρρµ)
)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .
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Trinity of gravity - General Relativity

GR assumes zero torsion and nonmetricity so that

Ricci scalar GR
R̃ = R̊+

((((((((((((
T − 2∇̊µ(

√−gT ρ
ρ
µ)
)
+
(((((((((((((
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+�C = R̊ .

Then, GR is constructed from the Ricci scalar

Einstein-Hilbert action

SGR =

∫ [
1

2κ2
R̊+ Lm

]√−g d4x .

where κ2 = 8πG and Lm is any matter Lagrangian.
The Einstein’s field equations are obtained by taking variations w/r

to the metric: R̊µν −
1

2
gµνR̊ = κ2Tµν .
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Trinity of gravity - Teleparallel equivalent of GR

Teleparallel equivalent of GR (TEGR) assumes zero curvature and
zero nonmetricity so that

Ricci scalar TEGR
R = 0 = R̊+

(
T + 2∇̊µ(

√
−gT ρ

ρ
µ)
)
+
((((((((((((
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+�C ,

⇐⇒ R̊ = −T + ∇̊µ(
√
−gT ρ

ρ
µ) := −T +B .

Then, TEGR is constructed from the torsion scalar T

(torsional) Teleparallel equivalent of GR (TEGR) action

STEGR =

∫ [
− 1

2κ2
T + Lm

]
e d4x .

Since R̊ differs by T by a boundary term B, the equations of TEGR
are equivalent to the Einstein’s field equations.
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No-hair Theorem

In General Relativity, there is theorem called “No-hair theorem” which
states that black holes do not have hair.

That means that black holes are described only by three parameters:
its mass M , angular momentum J (if it is rotating) and a charge Q
(which is though that it is almost zero for a astrophysical BH).
Only with those three parameters, one can predict all effects related to
the black hole.
The solution of the metric is the so-called Kerr-Newmann metric which
describes an axially rotating black hole solution with a charge.
This is a theorem, meaning that in GR, this is the unique
asymptotically flat black hole solution. In spherical symmetry, it is just
Schwarzschild.
Is it possible that black holes have hair? One needs to go beyond GR,
either by having modified gravity or allowing extra degrees of freedom
such as scalar fields coupled to gravity.
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Scalar fields non-minimally coupled to the Ricci scalar

Let us take the following simple extension of GR by allowing
couplings between the Ricci scalar and a scalar field with its kinetic
term X and a potential:

S =
1

2κ2

∫

M

[
F(ψ)

◦
R− 1

2
B(ψ)∂µψ∂µψ − 2κ2V(ψ)

]√−g d4x .

In the minimal case F(ψ) = 1 with V = 0, only Kerr is a solution.
Further, there is a no-hair theorem for V ∝ −ψ2 as well.
One can circumvent the no-hair theorem by having some particular
potentials and coupling functions. Although those solutions have
very unphysical potentials and those scalarized black hole solutions
are usually not so much interested astrophysically.
It seems that the simple theory fails to have more general realistic
black holes (with hair).
Is it then not possible to have something realistic beyond Kerr?
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Scalar Gauss-Bonnet

One can then modify the theory by having new terms in the action.
New possible curvature invariants can be added and the first ones
that one could think are quadratic contractions of curvature.

In Riemannian gravity, there is a topological invariant in 4D (does not
contribute to the field equations), which is known as the
Gauss-Bonnet invariant defined as

◦
G =

◦
Rαβµν

◦
Rαβµν − 4

◦
Rαβ

◦
Rαβ +

◦
R2 .

This means that the theory

SGR =

∫ [
1

2κ2
R̊+ α

◦
G

]√−g d4x

gives the Einstein’s field equations.
However, if one allows couplings between the Gauss-Bonnet invariant
and a scalar field, then the field equations will not be longer
equivalent to GR.
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Scalar Gauss-Bonnet

The Scalar Gauss-Bonnet (sGB) gravity theory is described by the
following action

SsGB =
1

2κ2

∫ [ ◦
R− 1

2
β ∂µψ∂

µψ + αG(ψ)
◦
G
]√−g d4x .

If G(ψ) = 1, then we just have GR. Equivalently, if ψ = const, we just
have GR.
For G(ψ) ̸= const, the field equations are not longer GR. For example
the scalar-field equation is

β
◦
□ψ + αĠ(ψ)

◦
G = 0 , (2)

where Ġ(ψ) = dG/dψ.

Note:
◦
R = 0 in Schwarzschild but

◦
G ̸= 0. That property would be

important to understand the difference between this model and the
former one.
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Scalar Gauss-Bonnet and Spontaneous scalarization

It has been shown (numerically) that for some particular coupling
functions, there are asymptotically flat scalarized black hole solutions
where the scalar charge emerges from a mechanism called
Spontaneous scalarization.

In this process, the predictions of the theory match the predictions of
GR in the weak field regime but differ in the strong field regime.
The described black hole coincides with Schwarzschild one for weak
gravitational fields when the spacetime curvature near the horizon is
too weak to source the scalar field.
For strong gravitational fields at the horizon, that realizes when the
black hole mass M falls below a certain threshold, the Schwarzschild
solution becomes unstable and a non-trivial scalar field emerges.
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Scalar Gauss-Bonnet and Spontaneous scalarization

The simplest way to study the spontaneous scalarization process is
by considering deviations from the Schwarzschild metric by choosing
the metric to have the form

ds2 = eδ(r)A(r)dt2 − 1
A(r)dr

2 − r2dΩ2 , δ(r) ≪ 1 , A(r) = 1− 2M

r
.

Then, one takes perturbations of the scalar field that can be written as

δψ(t, r, θ, ψ) = u(r)
r e−iωt Ylm(θ, ψ) ,

which allows us to decouple the metric field equations from the scalar
field equations.
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Scalar Gauss-Bonnet and Spontaneous scalarization

By plugging those expressions into the scalar field equation
(β

◦
□ψ + αĠ(ψ)

◦
G = 0) and after expanding them up to first order, we

obtain the following Schrodinger-like form equation

d2u

dr2∗
+ [ω2 − U(r)]u = 0 , with G′(ψ0) = 0 ,

where we have introduced tortoise coordinates dr∗ = (1− 2M/r)−1dr
and the Potential U(r) is given by

U(r) =
(
1− 2M

r

)[2M
r3

+
l(l + 1)

r2
+

48M2

r6β
αG̈(ψ0)

]
.

Here ψ0 is assumed to be the constant Schwarzschild geometry
background value of the scalar field.
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Scalar Gauss-Bonnet and Spontaneous scalarization

A sufficient condition for having an unstable mode is
∫ +∞

−∞
U(r∗)dr∗ =

∫ ∞

2M

U(r)

1− 2M
r

dr < 0 .

Therefore, the theory gives us the possibility to have such an unstable
mode if

3αG̈(ψ0) + 5βM2

10βM3
< 0 .

Then, for weak field regime the scalar charge does not emerge but
after passing a certain threshold which is related to strong gravity
regime (given by the above inequality), the Schwarzschild solution is
unstable and then, the charge emerges and the solution is not longer
Schwarzschild.
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Black holes in Scalar Gauss-Bonnet

The above analysis does not guarantee the existence of scalarized
black hole solutions since one needs to solve the full system of
equations.

That analysis has been done in several papers where (only
numerically), it has been shown the existence of asymptotically flat
scalarized black holes solutions with the spontaneous scalarization
mechanism.
Usually, exponential and power-law couplings give those solutions.
It has been proved that those solutions (numerically) are stable
against linear perturbations.
The study has been generalized for rotating solutions, charged black
holes or even multi-scalar field configurations.
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Black holes in Scalar Gauss-Bonnet

These solutions are one of the most important ones in modified
gravity to describe realistic black hole configurations beyond GR and
there are many studies about them.

For example, merger of binary of BH or templates of gravitational
waves have been generated and analysis in several papers.
Still, there are some issues about these solutions. For example, for
small BH masses, there is a loss of hyperbolicity in the numerics.
This means that still there are many parts unknown about this model.
What about non-Riemannian geometry?
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Overview of the Talk

1 Introduction to Teleparallel theories of gravity
Basic mathematical ingredients
Trinity of gravity

2 Black hole hair and Riemannian extensions of GR
No-hair theorem and a scalar field theory non-minimally coupled
to the Ricci scalar
Scalar-Gauss Bonnet gravity

3 Teleparallel scalar Gauss-Bonnet gravity
Scalar field non-minimally coupled to Torsion
Teleparallel scalar Gauss-Bonnet
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Scalar fields non-minimally coupled to Torsion

In our previous paper1, we studied Teleparallel theories with a scalar
field, for example2:

S =
1

2κ2

∫

M

[
−A(ψ)T − C̃(ψ)B − 1

2
B(ψ)∂µψ∂µψ − 2κ2V(ψ)

]√−g d4x ,

where X = −1
2g
µν∂µψ∂νψ.

Since
◦
R = −T +B, when A(ψ) = −C̃(ψ) the above theory is exactly

the same as the standard non-minimally one.
We found new exact black hole solutions (some of them different to
the Riemannian case), but they seem to be not so much interesting
phenomenologically.

1
S. Bahamonde, L. Ducobu and C. Pfeifer, JCAP 04 (2022) no.04, 018

2
S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034; M. Zubair, S. Bahamonde and M. Jamil, Eur. Phys. J.

C 77 (2017) no.7, 472; M. Hohmann and C. Pfeifer, Phys. Rev. D 98 (2018) no.6, 064003.
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Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.

Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the general connection.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 23 / 42



Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.
Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the general connection.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 23 / 42



Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.
Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the general connection.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 23 / 42



Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.
Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the general connection.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 23 / 42



Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.
Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the general connection.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 23 / 42



Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.
Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the general connection.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 23 / 42



Teleparallel scalar Gauss-Bonnet

Then, two Teleparallel Gauss-Bonnet invariants appear in the
Teleparallel framework. TG is a topological invariant in 4D and BG is a
boundary term (in all dimensions).

That means that in Teleparallel gravity, there are more ways to
construct a scalar Gauss-Bonnet theory. We then propose,

STsGB =
1

2κ2

∫ [
− T − 1

2
β ∂µψ∂

µψ + α1G1(ψ)TG + α2G2(ψ)BG

]
e d4x ,

This theory reproduces the Riemannian case in the limit G1 = G2 = G
and α1 = α2 = α.
For other coupling cases, the theory is different from the Riemannian
case.
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Teleparallel scalar Gauss-Bonnet

It is convenient to re-parametrize the action such that one has the
Riemannian case: (Note again

◦
G = TG +BG)

STsGB =
1

2κ2

∫ [
− T − 1

2
β ∂µψ∂

µψ + α2G2(ψ)(G̊− TG) + α1G1(ψ)TG

]
ed4x

=
1

2κ2

∫ [
R̊− 1

2
β ∂µψ∂

µψ + α2G2(ψ)G̊+ α3G3(ψ)TG

]
ed4x ,

There are three important limiting cases appearing from the above
action:

1 α3 = 0 (or equivalently α1G1(ψ) = α2G2(ψ)): this theory corresponds to
the standard sGB theory.

2 α2 = 0: this theory corresponds to a purely Teleparallel theory where
the dynamics are governed by F (ψ)TG.

3 α3G3(ψ) = −α2G2(ψ) (or equivalently α1 = 0): this theory also
corresponds to a purely Teleparallel theory where the dynamics are
governed by F (ψ)BG.

The second and third cases (α3 ̸= 0) are new in the literature and they
can only exist when one considers Teleparallel gravity.
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Spherical Symmetry in Teleparallel sGB

In TG, the dynamical variable is the tetrad field. The most general
tetrad satisfying spherical symmetry in the Weitzenbock gauge is

e
A

ν =


C1 C2 0 0

C3 sin θ cosϕ C4 sin θ cosϕ C5 cos θ cosϕ − C6 sinϕ − sin θ(C5 sinϕ + C6 cos θ cosϕ)
C3 sin θ sinϕ C4 sin θ sinϕ C5 cos θ sinϕ + C6 cosϕ sin θ(C5 cosϕ − C6 cos θ sinϕ)

C3 cos θ C4 cos θ −C5 sin θ C6 sin2 θ

 ,

where Ci = Ci(t, r) but hereafter, we will consider the stationary case
Ci = Ci(r).

Using gµν = ηABe
A
µe
B
ν , we have that the metric is

ds2 =
(
C2
1 − C2

3

)
dt2 − 2(C3C4 − C1C2) dt dr −

(
C2
4 − C2

2

)
dr2

−
(
C2
5 + C2

6

)
(dθ2 + r2 sin2 θdϕ2) ,

where we have cross-terms.
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Spherical Symmetry in Teleparallel sGB

Without losing generality, we can choose a coordinate system such
that the cross term vanishes. This can be easily done by taking the
following reparametrization:

C1(r) = νA(r) coshβ(r) , C3(r) = νA(r) sinhβ(r) ,

C4(r) = ξB(r) coshβ(r) , C2(r) = ξB(r) sinhβ(r) ,

C5(r) = χC(r) cosα(r) , C6(r) = χC(r) sinα(r) ,

with {ν, ξ, χ} being ±1. This tetrad gives the metric in the standard
form in spherical coordinates:

ds2 = A(r)2 dt2 −B(r)2 dr2 − C(r)2(dθ2 + sin2 θdϕ2) .

Note that β(r), α(r) are tetrad dof (they do not appear in the metric).
They can be set by solving the antisymmetric field equations.
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Antisymmetric field equations - Solutions

The field equation contains antisymmetric and symmetric part. There
are two different ways to solve the antisymmetric field equations.

Tetrad contains more dof than the metric (two different tetrads can
give rise the same metric - Lorentz dof).
The first branch which solves the antisymmetric equations is
β(r) = iπ n1 , α(r) = π n2 which gives

e(1)aµ =


νA 0 0 0
0 ξB sin θ cosϕ χC cos θ cosϕ −χC sin θ sinϕ
0 ξB sin θ sinϕ χC cos θ sinϕ χC sin θ cosϕ
0 ξB cos θ −χC sin θ 0

 , {ν, ξ, χ} = ±1 .

The second branch branch which solves the antisymmetric equations
is β(r) = iπ

2 + iπ n3 , α(r) =
π
2 + π which gives

e(2)aµ =


0 iξB 0 0

iνA sin θ cosϕ 0 −χC sinϕ −χC sin θ cos θ cosϕ
iνA sin θ sinϕ 0 χC cosϕ −χC sin θ cos θ sinϕ
iνA cos θ 0 0 χC sin2 θ

 , {ν, ξ, χ} = ±1 .
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Which tetrad to choose?

Those two tetrads give the same metric and they have different
symmetric field equations. Then, they can describe different physics.

Which tetrad is the correct one? Either of them, maybe?
Predictions/Observations can reply this.
One example of this would be in GR in axial symmetry. Kerr is not the
unique axial solution. We also for example have the so-called
Taub-NUT solution which is axially symmetric but it is not
asymptotically flat so that, it cannot describe realistic astrophysical
black hole configurations.
In our paper, we focused on the complex tetrad e(2)aµ since in
previous papers, we have found exact BH solutions (such in f(T )
Born-Infeld gravity).

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 29 / 42



Which tetrad to choose?

Those two tetrads give the same metric and they have different
symmetric field equations. Then, they can describe different physics.
Which tetrad is the correct one? Either of them, maybe?
Predictions/Observations can reply this.

One example of this would be in GR in axial symmetry. Kerr is not the
unique axial solution. We also for example have the so-called
Taub-NUT solution which is axially symmetric but it is not
asymptotically flat so that, it cannot describe realistic astrophysical
black hole configurations.
In our paper, we focused on the complex tetrad e(2)aµ since in
previous papers, we have found exact BH solutions (such in f(T )
Born-Infeld gravity).

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 29 / 42



Which tetrad to choose?

Those two tetrads give the same metric and they have different
symmetric field equations. Then, they can describe different physics.
Which tetrad is the correct one? Either of them, maybe?
Predictions/Observations can reply this.
One example of this would be in GR in axial symmetry. Kerr is not the
unique axial solution. We also for example have the so-called
Taub-NUT solution which is axially symmetric but it is not
asymptotically flat so that, it cannot describe realistic astrophysical
black hole configurations.

In our paper, we focused on the complex tetrad e(2)aµ since in
previous papers, we have found exact BH solutions (such in f(T )
Born-Infeld gravity).

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 29 / 42



Which tetrad to choose?

Those two tetrads give the same metric and they have different
symmetric field equations. Then, they can describe different physics.
Which tetrad is the correct one? Either of them, maybe?
Predictions/Observations can reply this.
One example of this would be in GR in axial symmetry. Kerr is not the
unique axial solution. We also for example have the so-called
Taub-NUT solution which is axially symmetric but it is not
asymptotically flat so that, it cannot describe realistic astrophysical
black hole configurations.
In our paper, we focused on the complex tetrad e(2)aµ since in
previous papers, we have found exact BH solutions (such in f(T )
Born-Infeld gravity).

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 29 / 42



Black holes in Teleparallel sGB - Spontaneous scalarization

We can follow a similar computation as in the sGB case to arrive at

d2u

dr2∗
+ [ω2 − U(r)]u = 0 , with G′

i(ψ0) = 0 ,

and now the potential is more general:

U(r) =
(
1− 2M

r

)[2M
r3

+
l(l + 1)

r2
− 32M

r5β
α3G̈3(ψ0)

+
48M2

r6β
(α3G̈3(ψ0) + α2G̈2(ψ0))

]
.

The theory gives us the possibility to have such an unstable mode if

−4α3G̈3(ψ0) + 6α2G̈2(ψ0) + 5βM2

20βM3
< 0 .

For our theory, spontaneous scalarization can occur in our theory for
a much larger choice of parameters for different masses.
Non-rotating black holes was possible only for α2 < 0 in sGB.
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Black holes in Teleparallel sGB - perturbed solutions

We can find analytical perturbed solutions around Schwarzschild that
can be obtained by taking

A(r)2 = 1− 2M

r
+ ϵ a1(r) + ϵ2 a2(r) ,

B(r)−2 = 1− 2M

r
+ ϵ b1(r) + ϵ2 b2(r) ,

αiGi(ψ) = ϵ αi Gi(ψ∞) +
ϵ αi
M2

G′
i(ψ∞)(ψ − ψ∞)

+
ϵ αi
2M4

G′′
i (ψ∞)(ψ − ψ∞)2 ,

ψ(r) = ψ∞ + ϵ ψ1(r) + ϵ2 ψ2(r) ,

where ϵ≪ 1 is a small tracking parameter.

We found a solution of the theory perturbatly which represents a
scalar-hair-endowed Schwarzschild black hole which is a
generalization of the well-known sGB solution presented in previous
Riemannian papers.
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Black holes in Teleparallel sGB - Asymptotic behaviour

To show the existence of BH (in a non-perturvative way) we need to
use numerical techniques.

To solve the equations numerically we need boundary conditions and
they can be found by expanding the equations at infinity and near the
horizon.
Let us now take expansions near the horizon rH as

A(r)2 = a1(r − rH) + a2(r − rH)2 + . . . ,

B(r)−2 = b1(r − rH) + b2(r − rH)2 + . . . ,

ψ(r) = ψH + ψ′
H(r − rH) + ψ′′

H(r − rH)2 + . . . .

By assuming these types of expansions, we ensure the fact that det(gµν) is
finite at the horizon as long as b1 is non-vanishing.
One can easily solve the system near the horizon and find two
branches of coupling.
When α3Ġ3 = α2Ġ2, the scalar field must satisfy

ψ′
H =

8α2Ġ2(ψH)

βr3H
.
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8α2Ġ2(ψH)

βr3H
.

Sebastian Bahamonde (*) Scalarization Gauss-Bonnet 32 / 42



Black holes in Teleparallel sGB - Asymptotic behaviour

To show the existence of BH (in a non-perturvative way) we need to
use numerical techniques.
To solve the equations numerically we need boundary conditions and
they can be found by expanding the equations at infinity and near the
horizon.
Let us now take expansions near the horizon rH as

A(r)2 = a1(r − rH) + a2(r − rH)2 + . . . ,

B(r)−2 = b1(r − rH) + b2(r − rH)2 + . . . ,

ψ(r) = ψH + ψ′
H(r − rH) + ψ′′

H(r − rH)2 + . . . .

By assuming these types of expansions, we ensure the fact that det(gµν) is
finite at the horizon as long as b1 is non-vanishing.

One can easily solve the system near the horizon and find two
branches of coupling.
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Black holes in Teleparallel sGB - Asymptotic behaviour

When α3Ġ3 ̸= α2Ġ2, the scalar field at the horizon must satisfy

ψ′
H =

rH

4(α2Ġ2 − α3Ġ3)

(
1±

1

β

[
β2 +

32(α3Ġ3 − α2Ġ2)

r8H

{
32α2

3Ġ2
3(α3Ġ3 − α2Ġ2)

+βr4H(3α2Ġ2 + α3Ġ3)
}]1/2)

−
8α3Ġ3

βr3H
.

This branch gives the correct condition for the Riemannian sGB case
(α3 = 0) that has been used widely in the literature to solving the
equations numerically:

ψ′
H =

1

4α2rH Ġ2

[
r2H ±

√
r4H − 96α2

2Ġ2
2

β

]
.

This analysis suggests that there are two different branches in
Teleparallel sGB having asymptotically flat scalarized black hole
configurations.
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4(α2Ġ2 − α3Ġ3)

(
1±

1

β

[
β2 +
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Black holes in Teleparallel sGB - Numerical solutions

By Taking β = 4 (kinetic constant), and setting the background value
of the scalar field to zero, we have two coupling constants α2 and α3

and two coupling functions G2 and G3.

We have decided to fix the two coupling functions in the following form

G2(ψ) =
1

12

(
1− e−6ψ2

)
= G3(ψ) .

This exponential function has one of the desired properties for
scalarization, namely, it allows the GR solutions with a zero scalar
field to be also solutions of the more general system of equations in
Teleparallel gravity.
For this coupling, it was proven in D. D. Doneva and S. S. Yazadjiev, Phys. Rev.

Lett. 120 (2018) no.13, 131103 that stable scalarized black hole solutions exist
in the sGB case.
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Black holes in Teleparallel sGB - Numerical solutions

Having fixed G2 and G3, the only theory parameters left to vary are α2

and α3 and more precisely, their relative weight. The following two
cases are especially interesting, since they are purely Teleparallel, i.e.
the scalarization is triggered by torsion:

1 α2 = 0 while α3 ̸= 0, the modification of GR comes only from the
Teleparallel topological invariant TG;

2 α2G2 + α3G3 = 0, the modification of GR comes only from the additional
Teleparallel boundary BG.

In either of these two limiting cases, no contribution of the
Riemannian Gauss-Bonnet term is present.

These cases go beyond the classification of theories allowing for
scalarization that is discussed in a recent Review3

3D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou and S. S. Yazadjiev,
[arXiv:2211.01766 [gr-qc]].
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Black holes in Teleparallel sGB - Numerical solutions

To solve the equations numerically we used a fourth order
Runge-Kutta method.

We used the boundary condition derived before (at the horizon) and
also we only concentrated on finding asymptotically flat solutions.
First, In order to gain some intuition about the existence and behavior
of black hole solutions let us start with discussing the bifurcation point,
which corresponds to the point where Schwarzschild becomes
unstable and new scalarized solutions originate, as well as the
behavior of the scalarized black hole branches.
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Numerical solutions - Mass and scalar charge case 1
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Figure: Setting α2 = −1 (the Riemannian sGB) and varying α3

With the increase of α3 the point of bifurcation from the GR branch
moves to large masses.

For larger α3, the branch of scalarized solutions disappears at smaller
masses.
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Numerical solutions - Mass and scalar charge case 2
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Figure: Setting α3 = 1 (the Teleparallel part) and varying α2

Contrary to the previous figure, larger α2 move the bifurcation point to
smaller masses

Even though this case offers a completely new type of scalarization,
the behaviour of the solutions branches is qualitatively very similar to
the sGB theory
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Conclusions and final remarks

Going beyond the no-hair theorem is not easy, and up to now, one of
best models describing asymptotically flat scalarized BH solution is
obtained in the sGB gravity.

Spontaneous scalarization mechanism gives the opportunity to have
the same predictions as GR in the weak field regime and the scalar
charges emerges in the strong gravity regime.
We constructed a new Teleparallel sGB model and construct the first
asymptotically flat BH scalarized solutions with spontaneous
scalarization.
Interestingly, our theory contains the sGB but there are more going
on here.
In our theory, it is possible to have non-monotonic behavior of the
scalar field close to the horizon even for the fundamental nodeless
scalar field branch of the black hole. Until now similar
non-monotonicity in sGB gravity was observed only for rotating black
holes.
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Conclusions and final remarks

Even though we restricted ourselves to static spherically symmetric
solutions, the black holes share a lot of similarities not only with the
static sGB case but also with the rotating sGB black holes.

On the other hand, all sectors of the Teleparallel gravity we
considered are well-behaved numerically.
Most interestingly, we found that already coupling one of the two
Teleparallel contributions TG and BG, which form the Riemannian
Riemannian Gauss-Bonnet term

◦
G, suffices to trigger scalarization.

This observation leads to the question if torsion (or other properties
of non-Riemannian geometry) might fundamentally be the origin of
the scalarization properties.
Our study can open a new unexplored window in the study of
scalarized black hole solutions in non-Riemannian theories of gravity
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static sGB case but also with the rotating sGB black holes.
On the other hand, all sectors of the Teleparallel gravity we
considered are well-behaved numerically.
Most interestingly, we found that already coupling one of the two
Teleparallel contributions TG and BG, which form the Riemannian
Riemannian Gauss-Bonnet term

◦
G, suffices to trigger scalarization.

This observation leads to the question if torsion (or other properties
of non-Riemannian geometry) might fundamentally be the origin of
the scalarization properties.
Our study can open a new unexplored window in the study of
scalarized black hole solutions in non-Riemannian theories of gravity
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