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General Relativity - Assumptions

General Relativity is based upon different assumptions that can be
understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

Equivalence principle

General covariance: Invariant under diffeomorphisms and Local
Lorentz transformations.
Riemannian geometry: The connection is the Levi-Civita one.
4-dimension
2nd order derivatives: gravitational action contains only second
derivatives.
Locality
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Why modified gravity?

GR is not compatible with quantum field theory;

The cosmological constant Λ problem; Dark energy, dark matter.
The H0 tension: 5σ tension between current expansion rate H0

using Planck data and direct model-independent measurements in
the local universe;
Big Bang singularity;
What is really the inflaton?
Strong gravity regime needs to be tested;
A good way to understand GR is to modify it;
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How to modify it?

Non-Riemannian geometry

Metric-affine
gravity

Non-commutative
geometry

Einstein-Cartan
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Figure: Classification of theories of gravity. (S. Bahamonde et.al., “Teleparallel Gravity: From
Theory to Cosmology,” 2023, Rep. Prog. Phys. 86 026901.)



Main contributions in cosmology and modified gravity

A comprehensive review in dynamical systems in cosmology:
We wrote a very general and important review paper that was
published in Physics Report, which explains and summarises all the
most important features and results in dynamical systems applied to
cosmology. This paper became very popular in the literature as a
guide tool to use this powerful technique to understand the
cosmology of any theory of gravity.

paper1.png
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Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.

A priori, there is no relation between gµν and Γ̃ρ
µν .

The most general metric-affine theory is characterised by the
following tensors:

Curvature R̃µ
νρσ = ∂ρΓ̃

µ
νσ − ∂σΓ̃

µ
νρ + Γ̃µ

τρΓ̃
τ
νσ − Γ̃µ

τσΓ̃
τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Non-metricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ
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What does curvature geometrically represent?

Curvature tensor R̃α
βµν

Rotation experienced by a vector when it is parallel transported along
a closed curve

1

2

3

4

56

R̂µ
νρσ

1

1′1

1′ T̂µ
νρ

1 2
Q̂µ

νρ
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What does torsion geometrically represent?

Torsion tensor T̃α
µν

non-closure of the parallelogram formed when two infinitesimal vectors
are parallel transported along each other.

1
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4

56

R̂µ
νρσ

1

1′1

1′ T̂µ
νρ

1 2
Q̂µ
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What does non-metricity geometrically represent?

Non-metricity tensor Q̃αµν

measures how much the length and angle of vectors change as we
parallel transport them, so in metric spaces the length of vectors is
conserve

1
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R̂µ
νρσ
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1′ T̂µ
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1 2
Q̂µ
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Metric-affine

Teleparallel

Riemann-Cartan

Weyl

Metric teleparallel

Symmetric teleparallel

Riemann

Minkowski
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µ
ν
ρ
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→

0

R̂
µ
ν
ρ
σ
→

0

R̂
µ
ν
ρ
σ
→

0

R̂
µ
ν
ρ
σ
→

0

Q̂µνρ → 0

Q̂µνρ → 0

Q̂µνρ → 0

Q̂µνρ → 0

T̂
µ νρ

→
0

T̂
µ νρ

→
0

T̂
µ νρ

→
0

T̂
µ νρ

→
0

Figure: Classification of metric-affine geometries - Cube



Tetrads and spin connection

Notation: µ, ν, α, ..: space-time; a, b, c, ..: tangent space.
Γ̊: Levi-Civita, Γ: Teleparallel connection;Γ̃: General connection.

Tetrads (or vierbein) eaµ are linear basis on the spacetime manifold,
and at each point of the spacetime, tetrads gives us basis for vectors
on the tangent space.
Tetrads satisfy the orthogonality condition; emµenµ = δnm and
em

νemµ = δνµ and the metric and its inverse can be reconstructed via

Metric and tetrads

gµν = ηabe
a
µe

b
ν , gµν = ηabEa

µEb
ν

where ηab is the Minkowski metric.
Quantities denoted with a circle on top ◦ denote that they are defined
with respect to the Levi-Civita connection and hats are general affine
connection.
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Tetrads and spin connection

The frame coefficients EA
µ are also required in order to calculate the

coefficients Γ̃µ
νρ of the affine connection from the spin connection

ω̃A
Bµ via

Γ̃ρ
µν = EA

ρ
(
∂νe

A
µ + ω̃A

Bνe
B
µ

)
,

which is the unique affine connection satisfying the so-called “tetrad
postulate”

∂µe
A
ν + ω̃A

Bµe
B
ν − Γ̃ρ

νµe
A
ρ = 0 .

Curvature, non-metricity and torsion are properties of the spin
connection ω̃a

bµ only (not the tetrad). For example the curvature

R̃A
Bµν := ∂µω̃

A
Bν − ∂ν ω̃

A
Bµ + ω̃A

Cµω̃
C
Bν − ω̃A

Cνω̃
C
Bµ .

In metric-affine, the spin connection and tetrads are independent to
each other.
It is equivalent to work with either the pair (gµν ,Γµ

αβ) or (eAµ, ω
A
Bµ).
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coefficients Γ̃µ
νρ of the affine connection from the spin connection

ω̃A
Bµ via

Γ̃ρ
µν = EA

ρ
(
∂νe

A
µ + ω̃A

Bνe
B
µ

)
,

which is the unique affine connection satisfying the so-called “tetrad
postulate”

∂µe
A
ν + ω̃A

Bµe
B
ν − Γ̃ρ

νµe
A
ρ = 0 .
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connection ω̃a
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Trinity of gravity - curvature tensor

The curvature becomes

R̃µ
νρσ = R̊µ

νρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µT

ρ
ρ
µ
)
+

(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −QσσρT

ρκ
κ) .

Sebastian Bahamonde (*) Teleparallel Gravity 16 / 47



Trinity of gravity - curvature tensor

The curvature becomes

R̃µ
νρσ = R̊µ

νρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µT

ρ
ρ
µ
)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −QσσρT

ρκ
κ) .

Sebastian Bahamonde (*) Teleparallel Gravity 16 / 47



Trinity of gravity - curvature tensor

The curvature becomes

R̃µ
νρσ = R̊µ

νρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µT

ρ
ρ
µ
)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −QσσρT

ρκ
κ) .

Sebastian Bahamonde (*) Teleparallel Gravity 16 / 47



Trinity of gravity - curvature tensor

The curvature becomes

R̃µ
νρσ = R̊µ

νρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µT

ρ
ρ
µ
)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −QσσρT

ρκ
κ) .

Sebastian Bahamonde (*) Teleparallel Gravity 16 / 47



Trinity of gravity - curvature tensor

The curvature becomes

R̃µ
νρσ = R̊µ

νρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µT

ρ
ρ
µ
)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −QσσρT

ρκ
κ) .

Sebastian Bahamonde (*) Teleparallel Gravity 16 / 47



Trinity of gravity - General Relativity

GR assumes zero torsion and nonmetricity so that

Ricci scalar GR
R̃ = R̊+

��������(
T − 2∇̊µT

ρ
ρ
µ
)
+
(((((((((((((
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+�C = R̊ .

Then, GR is constructed from the Ricci scalar

Einstein-Hilbert action

SGR =

∫ [
− 1

2κ2
R̊+ Lm

]√−g d4x .

where κ2 = 8πG and Lm is any matter Lagrangian.
The Einstein’s field equations are obtained by taking variations w/r

to the metric: R̊µν −
1

2
gµνR̊ = κ2Tµν .
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Trinity of gravity - Torsional Teleparallel equivalent of GR

Teleparallel equivalent of GR (TEGR) assumes zero curvature and
zero nonmetricity so that

Ricci scalar TEGR
R = 0 = R̊+

(
T + 2∇̊µT ρρµ

)
+
((((((((((((
Q+ ∇̊µQµνν − ∇̊νQµµν

)
+�C ,

⇐⇒ R̊ = −T + ∇̊µ(
√
−gT ρρ

µ) := −T +B .

Notice that B ≡ 2∇̊µ(
√−gT ρ

ρ
µ) = 2√

−g
∂µ(

√−gT ρ
ρ
µ).

Then, TEGR is constructed from the torsion scalar T

(torsional) Teleparallel equivalent of GR (TEGR) action

STEGR =

∫ [
− 1

2κ2
T + Lm

]√−g d4x .

Since R̊ differs by T by a boundary term B, the equations of TEGR
are equivalent to the Einstein’s field equations.
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What happens to the connection in Torsional Teleparallel gravity?

Let’s recall the curvature equation and assume the Teleparallel
condition:

Rσ
ρµν =

◦
Rσ

ρµν −
◦
∇νL

σ
µρ +

◦
∇µL

σ
νρ − Lσ

νλL
λ
µρ + Lσ

µλL
λ
νρ = 0 ,

By solving this equation for the connection we obtain (zero curvature)

Γα
µν = (Λ−1)αλ∂µΛ

λ
ν ,

with Λ ∈ GL(4,R) (general Lineal group).
By further assuming that non-metricity is zero, then Λµ coincides with
a local Lorentz matrix. Then, the spin connection is pure gauge.
In this case it is always possible to choose a gauge (at least locally, on
a simply connected domain) such that the spin connection vanishes
identically, wa

bµ = 0. This gauge is known as the Weitzenböck gauge.
By choosing that gauge, Local Lorentz is broken.
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Trinity of gravity - Symmetric Teleparallel equivalent of GR

Symmetric Teleparallel equivalent of GR (STEGR) assumes zero
curvature and zero torsion so that

Ricci scalar STEGR
R = 0 = R̊+

�������(
T + 2∇̊µT ρρµ

)
+

(
Q+ ∇̊µQµνν − ∇̊νQµµν

)
+�C ,

⇐⇒ R̊ = −Q− ∇̊νQµµν + ∇̊µQµνν := −Q+BQ .

Then, STEGR is constructed from the nonmetricity scalar Q

(non-metricity)Symmetric Teleparallel equivalent of GR (STEGR) action

SSTEGR =

∫ [
− 1

2κ2
Q+ Lm

]√−g d4x .

Since R̊ differs by Q by a boundary term BQ, the equations of
STEGR are equivalent to the GR eqs.
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What happens to the connection in Symmetric Teleparallel gravity?

By solving this equation for the connection we obtain (zero curvature)

Γα
µν = (Λ−1)αλ∂µΛ

λ
ν ,

with Λ ∈ GL(4,R) (general Lineal group).

Now by imposing that torsion is zero

Γα
µν =

∂xα

∂ξλ
∂µ∂νξ

λ ,

where we have parametrized Λα
µ = ∂µξ

α in terms of the auxiliary field
ξα associated to diffeomorphisms (as a Stückelberg field).
Thus, the maximum number of dof in the nonmetricity part of the
connection goes down from 40 dof to a maximum of 4 independent
dof (that can be expressed via the vector ξµ).
Note that it is possible to choose a gauge such that the
(affine)connection is always vanishing (Coincident gauge) - Γα

µν = 0.
By choosing that gauge, diffeo is broken (locally).
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T. S. Koivisto, “The Geometrical Trinity of Gravity,” Universe 5 (2019) no.7, 173.)



Three different ways of understanding gravity

Coupling to matter
In TG, no direct matter coupling to the teleparallel connections are
introduced, in order to preserve the weak equivalence principle =⇒ matter
fields retain their universal coupling to the metric and possibly its
Levi-Civita connection (in the case of spinor fields).

Equivalence on their field equations
TEGR and STEGR have the same equations as GR, so
CLASSICALLY it is impossible to make any observation to distinguish
between them. All classical experiments already done, that have
confirmed GR, also can be understood as a confirmation of TEGR and
STEGR.
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Overview of the Talk

1 Introduction to Metric-affine gravity
Why modified gravity?
Basic ingredients
Trinity of gravity

2 Modified Torsional Teleparallel theories of gravity
General features
Some important theories
Applications to cosmology

3 Conclusions and final remarks
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Modified teleparallel theories

What happens if we modify TEGR or STEGR?
If we modify the TEGR action, a priori there is no equivalence between
modified theories from GR and modified Teleparallel theories.

Are Torsional Teleparallel theories Local Lorentz invariant?
By choosing the Weitzenbock gauge ωa

bµ = 0, local Lorentz is broken.
However, by not adopting any gauge, these theories are invariant
under a simultaneous local Lorentz transformations in both the tetrad
and spin connection.
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Torsion tensor

The field strength in Torsional TG is the torsion tensor that is defined
as the antisymmetric part of the Weitzenböck connection

Torsion tensor

T ρ
µν = Γρ

νµ − Γρ
µν = EA

ρ
(
eAν,µ − eAµ,ν + ωA

Bµe
B
ν − ωA

Bνe
B
µ

)
.

The torsion tensor is generally non-vanishing, and transforms
covariantly under both diffeomorphisms and local Lorentz
transformations.
The pure tetrad formalism was the initial framework used for TG,
which chooses a specific frame where the spin connection ωa

bµ

vanishes. Be careful choosing the correct tetrad which is compatible
with this gauge.
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Important properties of Torsional Teleparallel theories

Variations of any action should be taken with respect to both variables
(with the emphasis that the spin connection is non-arbitrary but
always flat).

Since ωA
Bµ is a pure-gauge quantity, it can be shown that the the

antisymmetric part of the field equations arising from variations w/r to
the tetrads eAµ coincides with the variations of the action w/r to ωA

Bµ.
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New General Relativity (NGR)

The torsion tensor can be decomposed in its irreducible parts as

aµ =
1

6
ϵµνσρT

νσρ , vµ = T σ
σµ ,

tσµν =
1

2
(Tσµν + Tµσν) +

1

6
(gνσvµ + gνµvσ)−

1

3
gσµvν ,

where ϵµνσρ is the totally anti-symmetric Levi-Civita symbol.
From these we build the scalars

Tax = aµa
µ , Tvec = vµv

µ , Tten = tσµνt
σµν ,

and the torsion scalar is a linear combination

T =
3

2
Tax +

2

3
Tten −

2

3
Tvec .
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New General Relativity (NGR)

The first Teleparallel modification was introduced in 19791, and it is
labelled as New General Relativity. Its action reads

New General Relativity action

SNGR =
1

2κ2

∫
d4x

[
c1Tvec + c2Tax + c3Tten

]
e .

If c1 = −2
3 , c2 =

3
2 , c3 =

2
3 , the above action is equivalent to the TEGR

one.

1K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979), 3524-3553
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New General Relativity (NGR)

In this theory, torsion would represent additional degrees of freedom
relative to the curvature, which would thus produce deviations in
relation to general relativity

This theory contains parity-preserving quadratic form of the torsion
with three free parameters.
Perturbations around Minkowski shows that the unique stable
Minkowski background that includes gravity is the TEGR case2.

2J. Beltrán Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
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2J. Beltrán Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
Sebastian Bahamonde (*) Teleparallel Gravity 30 / 47



New General Relativity (NGR)

In this theory, torsion would represent additional degrees of freedom
relative to the curvature, which would thus produce deviations in
relation to general relativity
This theory contains parity-preserving quadratic form of the torsion
with three free parameters.
Perturbations around Minkowski shows that the unique stable
Minkowski background that includes gravity is the TEGR case2.
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f(T ) gravity

Inspired from f(R̊) gravity, Ferraro and Fiorini3 introduced another
teleparallel theory by generalising T → f(T ) in the action:

f(T ) gravity action

Sf(T ) =

∫
f(T )e d4x .

The torsion scalar T depends on the first derivatives of the tetrads →
Second order theory:

Not equivalence between f(R̊) and f(T )

Field equations of f(T ) ̸= Field equations of f(R̊)

3R. Ferraro and F. Fiorini, Phys. Rev. D 75 (2007), 084031.
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f(T ) gravity

Lots of misunderstandings in the literature since this theory was firstly
formulated in the non-Lorentz covariance formulation.

Now, we know that the spin connection must be included in the
definition of torsion to keep the theory local Lorentz invariance.
The Hamiltonian analysis is extremely difficult. Due to this, different
papers have claimed different d.o.f.
The last paper which seems to be correct suggests that there are 5
d.o.f.(M. Blagojević and J. M. Nester, Phys. Rev. D 102 (2020) no.6, 064025)

Strongly coupling problem? By performing Minkowski
perturbations, one only finds new modes at 4th order in the
perturbation (J. Beltrán Jiménez, A. Golovnev, T. Koivisto and H. Veermäe, [arXiv:2004.07536])
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Sebastian Bahamonde (*) Teleparallel Gravity 32 / 47



f(T ) gravity

Lots of misunderstandings in the literature since this theory was firstly
formulated in the non-Lorentz covariance formulation.
Now, we know that the spin connection must be included in the
definition of torsion to keep the theory local Lorentz invariance.
The Hamiltonian analysis is extremely difficult. Due to this, different
papers have claimed different d.o.f.

The last paper which seems to be correct suggests that there are 5
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f(T,B) gravity

It is possible to extend this theory by adding more invariants. One
interesting theory is when one considers4

f(T,B) gravity action

Sf(T,B) =

∫
f(T,B)e d4x .

If f(T,B) = f(−T +B) = f(
◦
R), one finds the f(

◦
R) theory in the

context of TEGR.
If f(T,B) = f(T ), one gets f(T ) gravity
Other theories related to the boundary term such as −T + f(B)
gravity.

4S. Bahamonde, C. G. Böhmer and M. Wright, Phys. Rev. D 92 (2015) no.10, 104042
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f(T,B) gravity

The speed of the gravitational waves is exactly c and extra
polarization models, namely the longitudinal and breathing modes, do
appear at first-order perturbation level.

Compatible with Solar System tests.
It can be used to solve the H0 tension
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How to work with different geometric symmetries

Teleparallel theories have the tetrads and spin connection (being
always flat) as the fundamental variables

Then, for a specific symmetry, we assume that both the spin
connection(flat) and the tetrad satisfy the symmetry condition
Lξω

a
bµ = 0 and Lξe

a
µ = 0.

For a flat FLRW spacetime in Cartesian coordinates (t, x, y, z), this
condition is satisfied for ωa

bµ = 0 and

FLRW tetrad compatible with cosmological symmetries in the Weitzenböck
gauge

eaµ = diag(N(t), a(t), a(t), a(t))

→ ds2 = N(t)2 − a(t)2(dx2 + dy2 + dz2) .
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How to work with different geometric symmetries

Antisymmetric field equations
Important point: the tetrad showed in the last slide in the Weitzenböck
gauge solves all the antisymmetric field equations for any Teleparallel
gravitational theory

Spherical coordinates
Be careful here: In spherical coordinates (t, r, θ, ϕ), the tetrad in the
Weitzenböck gauge looks more complicated (off-diagonal terms
appear):

eaµ =


N(t) 0 0 0
0 a(t) sin(θ) cos(ϕ) ra(t) cos(θ) cos(ϕ) −ra(t) sin(θ) sin(ϕ)
0 a(t) sin(θ) sin(ϕ) ra(t) cos(θ) sin(ϕ) ra(t) sin(θ) cos(ϕ)
0 a(t) cos(θ) −ra(t) sin(θ) 0

 .
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Cosmological perturbations in TG

In a metrical theory, one perturbs the FLRW metric in the
scalar-vector-tensor decomposition form:

δgµν =

[
−2φ a (∂iB + Bi)

a (∂iB + Bi) 2a2
(
−ψδij + ∂i∂jh+ 2∂(ihj) +

1
2hij

)
]
.

In TG, the zeroth-order is eaµ = diag(N(t), a(t), a(t), a(t)) with
ωa

bµ = 0. We perturb this tetrad reproducing the above metric:

δe
A

µ =

[
φ a (∂iβ + βi)

δI i

(
∂ib + bi

)
aδIi

(
−ψδij + ∂i∂jh + 2∂(ihj) + 1

2
hij + ϵijk

(
∂kσ + σk

)) ]
.

The metric has 10 d.o.f. (4 scalars(1 each), 2 vectors(2 each), 1
tensor(2 each)) and the tetrads 16 d.o.f. (6 scalars(1 each), 4
vectors(2 each), 1 tensor(2 each)).
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Background cosmology in f(T,B) gravity

The modified FLRW equations in f(T,B) gravity are5

−3H2 (3fB + 2fT ) + 3HḟB − 3ḢfB +
1

2
f = κ2ρm ,

−
(
3H2 + Ḣ

)
(3fB + 2fT )− 2HḟT + f̈B +

1

2
f = −κ2pm .

It reproduces ΛCDM cosmology without introducing a cosmological
constant and matches with observations.
Dynamical system: de Sitter and Scaling solutions. Matter epoch +
two accelerated phases with one of them de-Sitter.
It can describe different bounce cosmological solutions.
I can alleviate both σ8 and H0 at the same time.

5
S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77 (2017) no.2, 107
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Cosmological perturbations in f(T,B) gravity

Tensorial perturbations: GW propagation equation is6

ḧij + (3 + αM )Hḣij +
k2

a2
hij = 0 ,

meaning that c2T = 1 with a Planck mass run rate αM = 1
H

ḟT
fT

. Thus,
fT < 0 is required for stability issues.

Vectorial perturbations: The vector perturbations are not
propagating (as in f(

◦
R)).

6S. Bahamonde, V. Gakis, S. Kiorpelidi, T. Koivisto, J. Levi Said and
E. N. Saridakis, [arXiv:2009.02168 [gr-qc]].
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Cosmological perturbations in f(T,B) gravity

Scalar perturbations: Very messy symmetric and antisymmetric field
equations. The density parameter and the weak lensing parameter in
Fourier space of the sub-horizon limit obey

δ̈m + 2Hδ̇m ≃ −k
2φ

a2
= 4πρGeffδm =

κ2

2
ρGeffδm ,

Σ =
1

2

Geff

G

(
1 +

ψ

φ

)
.

There are different branches having different Geff depending on the
form of f .
For example for fBB + 2fTB + fTT = 0 one finds
Geff = −G 4

3(fT+12H2fTB)
. One can use these results to constrain

models.
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Cosmological perturbations in f(T,B) gravity - H0 tension

f(T ) gravity model does not show tension on the H0 that prevails in
the ΛCDM cosmology, however, σ8 tension persists(R. C. Nunes, JCAP
05 (2018), 052)
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Background cosmology in Teleparallel scalar-tensor

Teleparallel dark energy7 (coupling like ξϕ2T ) exhibits a quintessence-like,
dark-energy-dominated solution, or to the stiff dark-energy late-time
attractor, similarly to standard quintessence. There is an additional late-time
solution, in which dark energy behaves like a cosmological constant.

Theories with a coupling χϕ2B have late time accelerating attractor solution
without requiring any fine tuning of the parameters. A dynamical crossing of
the phantom barrier is also possible8

TG non-local cosmology with a term like Tf( ◦
2−1T ) in the action is

consistent with the present cosmological data obtained by SNe Ia + BAO +
CC + H0 observations9

7
C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B 704 (2011), 384-387

8
S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034

9
S. Bahamonde, S. Capozziello, M. Faizal and R. C. Nunes, Eur. Phys. J. C 77 (2017) no.9, 628
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Teleparallel Horndeski gravity - perturbations

By considering tensorial perturbations only and after some
cumbersome calculations, one gets the following wave equation

ḧij + (3 + αM)Hḣij − (1 + αT)
k2

a2
hij = 0,

where αT = c2T − 1 and the speed of GW being equal to10

Speed of GW in Teleparallel Horndeski

c2T =
G4 −X(ϕ̈G5,X +G5,ϕ)−GTele,T

G4 − 2XG4,X −X(Hϕ̇G5,X −G5,ϕ) + 2XGTele,J8 + 1
2
XGTele,J5 −GTele,T

.

10
S. Bahamonde, K. F. Dialektopoulos, V. Gakis and J. Levi Said, Phys. Rev. D 101 (2020) no.8, 084060
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Reviving Horndeski using Teleparallel gravity

For GTele = 0 (standard case), one gets that to achieve a theory
consistent with the GW observations cT = 1, one requires
G5(ϕ,X) = constant and G4(ϕ,X) = G4(ϕ). Hence, Horndeski gravity
is highly constraint.

If one has Teleparallel Horndeski, c2T is corrected and then when does
no need those conditions. Indeed, G5 = G5(ϕ) and G4 = G4(ϕ,X) still
respect this condition.
The theory which respects this condition is

Teleparallel Lagrangian respecting cT = 1 (αT = 0)

L = G̃tele(ϕ,X, T, Tvec, I2) +
4∑

i=2

Li +G5(ϕ)Gµνϕ
;µν .
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Overview of the Talk

1 Introduction to Metric-affine gravity
Why modified gravity?
Basic ingredients
Trinity of gravity

2 Modified Torsional Teleparallel theories of gravity
General features
Some important theories
Applications to cosmology

3 Conclusions and final remarks
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Conclusions

TG opens a new windows to study cosmology from a different
perspective where torsion or non-metricity are non-zero and curvature
is zero.

It is possible to formulate theories which are equivalent to GR, and
then, one can modify these equations to explain dark energy or
inflation.
One needs to be more careful than in Riemannian theories since the
tetrad and spin connection form a pair that always need to be
considered in a proper way to fulfill the symmetry condition to then
solve the antisymmetric field equations.
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Conclusions

Two important TG theories: f(T,B) (contains f(
◦
R)) and Teleparallel

Horndeski (contains many scalar-tensor theories).

TG cosmology can explain dark energy, alleviate H0 tension and there
are may interesting models with interesting features.
There are many things totally unexplored in TG, so please go ahead!
I did not have time to explain our recent paper 2212.08005 where we
formulated Symmetric Teleparallel Horndeski gravity (only with
non-metricity).
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