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Curvature tensor

The curvature becomes

R̃µνρσ = R̊µνρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρµρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µ(

√
−gT ρρµ)

)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .
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Teleparallel equivalent of GR

Teleparallel equivalent of GR (TEGR) assumes zero curvature and
zero nonmetricity so that

Ricci scalar TEGR
R = 0 = R̊+

(
T + 2∇̊µ(

√
−gT ρ

ρ
µ)
)
+
((((((((((((
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+�C ,

⇐⇒ R̊ = −T + ∇̊µ(
√
−gT ρ

ρ
µ) := −T +B .

Then, TEGR is constructed from the torsion scalar T

(torsional) Teleparallel equivalent of GR (TEGR) action

STEGR =

∫ [
− 1

2κ2
T + Lm

]
e d4x .

Since R̊ differs by T by a boundary term B, the equations of TEGR
are equivalent to the Einstein’s field equations.
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Connection in Teleparallel gravity

GR assumes zero torsion and non-zero curvature (Levi-Civita
connection) whereas Teleparallel gravity (TG) assumes zero
curvature and non-zero torsion. Both assumes non-metricity to be
zero, meaning ∇̃αgµν = 0.

TG has a different connection known as “Weitzenböck connection”,
defined as

Weitzenböck connection

Γρµν = Ea
ρDµe

a
ν = Ea

ρ(∂µe
a
ν + wabµe

b
ν) .

Then, torsion tensor is1

Torsion tensor

T ρµν = Γρνµ − Γρµν = EA
ρ
(
eAν,µ − eAµ,ν + ωABµe

B
ν − ωABνe

B
µ

)
.

1
See for a review: S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann,

J. Levi Said, J. Mifsud and E. Di Valentino, Rept. Prog. Phys. 86 (2023) no.2, 026901
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Important properties of Teleparallel theories

Variations of any action should be taken with respect to both variables
(with the emphasis that the spin connection is non-arbitrary but
always flat).

Since ωABµ is a pure-gauge quantity, it can be shown that the the
antisymmetric part of the field equations arising from variations w/r to
the tetrads eAµ coincides with the variations of the action w/r to ωABµ.
Then, in the Weitzenbock gauge (zero spin connection), it is sufficient
to: 2

δeS =⇒ E(µν) = κ2Θµν , E[µν] = 0 , (1)

then, we have 10 + 6 dof of the tetrad in the symmetric+antisymmetric
field equations.

2M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, Phys. Rev. D 97 (2018) no.10, 104042
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Spherical Symmetry in Teleparallel gravity

In TG, all the dynamics can be put in the tetrad and the spin connection can be set to be zero.

We assume that the connection and metric have the same symmetries:

LZζ
eA µ = −λAζ Be

B
µ , LZζ

ωA
Bµ = ∂µλ

A
ζ B + ωA

Cµλ
C
ζ B − ωC

Bµλ
A
ζ C . (2)

The most general tetrad satisfying spherical symmetry in the Weitzenbock gauge (zero spin
connection) is 3

e
A

ν =


C1 C2 0 0

C3 sin θ cosϕ C4 sin θ cosϕ C5 cos θ cosϕ − C6 sinϕ − sin θ(C5 sinϕ + C6 cos θ cosϕ)
C3 sin θ sinϕ C4 sin θ sinϕ C5 cos θ sinϕ + C6 cosϕ sin θ(C5 cosϕ − C6 cos θ sinϕ)

C3 cos θ C4 cos θ −C5 sin θ C6 sin2 θ

 ,

where Ci = Ci(t, r).

Using gµν = ηABe
A

µeBν , we have that the metric is

ds2 =
(
C2

1 − C2
3

)
dt2 − 2(C3C4 − C1C2) dtdr −

(
C2

4 − C2
2

)
dr2

−
(
C2

5 + C2
6

)
(dθ2 + r2 sin2 θdϕ2) ,

where we have cross-terms.

3M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, Phys. Rev. D 100 (2019) no.8, 084002
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Spherical Symmetry in Teleparallel gravity

Without losing generality, we can choose a coordinate system such
that the cross term vanishes. This can be easily done by taking the
following reparametrization:

C1(r) = νA(r) coshβ(r) , C3(r) = νA(r) sinhβ(r) ,

C4(r) = ξB(r) coshβ(r) , C2(r) = ξB(r) sinhβ(r) ,

C5(r) = χC(r) cosα(r) , C6(r) = χC(r) sinα(r) ,

with {ν, ξ, χ} being ±1. This tetrad gives the metric in the standard
form in spherical coordinates:

ds2 = A(r)2 dt2 −B(r)2 dr2 − C(r)2(dθ2 + sin2 θdϕ2) .

Note that β(r), α(r) are tetrad dof (they do not appear in the metric).
They can be set by solving the antisymmetric field equations.
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Overview of the Talk

1 Very Brief Introduction to Teleparallel theories of gravity

2 Generic properties of Teleparallel Theories

3 Teleparallel scalar Gauss-Bonnet gravity
Scalar-Gauss Bonnet gravity
Teleparallel Gauss-Bonnet
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No-hair Theorem

In General Relativity, there is theorem called “No-hair theorem” which
states that black holes do not have hair.

That means that black holes are described only by three parameters:
its mass M , angular momentum J (if it is rotating) and a charge Q
(which is though that it is almost zero for a astrophysical BH).
Only with those three parameters, one can predict all effects related to
the black hole.
The solution of the metric is the so-called Kerr-Newmann metric which
describes an axially rotating black hole solution with a charge.
This is a theorem, meaning that in GR, this is the unique
asymptotically flat black hole solution. In spherical symmetry, it is just
Schwarzschild.
Is it possible that black holes have hair? One needs to go beyond GR,
either by having modified gravity or allowing extra degrees of freedom
such as scalar fields coupled to gravity.
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Scalar Gauss-Bonnet

One can then modify the theory by having new terms in the action.
New possible curvature invariants can be added and the first ones
that one could think are quadratic contractions of curvature.

In Riemannian gravity, there is a topological invariant in 4D (does not
contribute to the field equations), which is known as the
Gauss-Bonnet invariant defined as

◦
G =

◦
Rαβµν

◦
Rαβµν − 4

◦
Rαβ

◦
Rαβ +

◦
R2 .

This means that the theory

SGR =

∫ [
1

2κ2
R̊+ α

◦
G

]√
−g d4x

gives the Einstein’s field equations.
However, if one allows couplings between the Gauss-Bonnet invariant
and a scalar field, then the field equations will not be longer
equivalent to GR.
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Scalar Gauss-Bonnet

The Scalar Gauss-Bonnet (sGB) gravity theory is described by the
following action

SsGB =
1

2κ2

∫ [ ◦
R− 1

2
β ∂µψ∂

µψ + αG(ψ)
◦
G
]√

−g d4x .

If G(ψ) = 1, then we just have GR. Equivalently, if ψ = const, we just
have GR.
For G(ψ) ̸= const, the field equations are not longer GR. For example
the scalar-field equation is

β
◦
□ψ + αĠ(ψ)

◦
G = 0 , (3)

where Ġ(ψ) = dG/dψ.

Note:
◦
R = 0 in Schwarzschild but

◦
G ̸= 0. That property would be

important to understand the difference between this model and the
former one.
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Scalar Gauss-Bonnet and Spontaneous scalarization

It has been shown (numerically) that for some particular coupling functions, there are
asymptotically flat scalarized black hole solutions where the scalar charge emerges from a
mechanism called Spontaneous scalarization.

In this process, the predictions of the theory match the predictions of GR in the weak field
regime but differ in the strong field regime.

The described black hole coincides with Schwarzschild one for weak gravitational fields when
the spacetime curvature near the horizon is too weak to source the scalar field.

For strong gravitational fields at the horizon, that realizes when the black hole mass M falls
below a certain threshold, the Schwarzschild solution becomes unstable and a non-trivial scalar
field emerges.

Thus the solution bifurcates to a different black hole solution with scalar hair.

This transition is usually smooth in sGB and shares similarities with second order phase

transitions.
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Scalar fields non-minimally coupled to Torsion

In our previous paper4, we studied Teleparallel theories with a scalar
field, for example5:

S =
1

2κ2

∫
M

[
−A(ψ)T − C̃(ψ)B − 1

2
B(ψ)∂µψ∂µψ − 2κ2V(ψ)

]√
−g d4x ,

where X = −1
2g
µν∂µψ∂νψ.

Since
◦
R = −T +B, when A(ψ) = −C̃(ψ) the above theory is exactly

the same as the standard non-minimally one.
We found new exact black hole solutions (some of them different to
the Riemannian case), but they seem to be not so much interesting
phenomenologically.

4
S. Bahamonde, L. Ducobu and C. Pfeifer, JCAP 04 (2022) no.04, 018

5
S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034; M. Zubair, S. Bahamonde and M. Jamil, Eur. Phys. J.

C 77 (2017) no.7, 472; M. Hohmann and C. Pfeifer, Phys. Rev. D 98 (2018) no.6, 064003.
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Teleparallel scalar Gauss-Bonnet

One can formulate a similar (and more general) theory than the
Riemannian scalar Gauss-Bonnet theory but in the Teleparallel
geometry.

Since curvature is zero in TG, we arrive at

Relationship Riemannian Gauss-Bonnet and Teleparallel Gauss-Bonnet invariants
◦
G = TG +BG ,

where

TG = δµνσλαβγϵK
α
χµK

χβ
νK

γ
ξσK

ξϵ
λ + 2δµνσλαβγϵK

αβ
µK

γ
χνK

χϵ
ξK

ξ
σλ

+2δµνσλαβγϵK
αβ

µK
γ
χνDλK

χϵ
σ ,

BG =
1

e
∂µ

[
eδµνσλαβγϵK

αβ
ν

(
Kγ

ξσK
ξϵ
λ −

1

2

◦
Rγϵσλ

)]
.

Here, Dλ is the cov derivative of the Tele connection and
Kρ

µν = Γρµν −
◦
Γρµν = 1

2 (Tµ
ρ
ν + Tν

ρ
µ − T ρµν).
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Teleparallel scalar Gauss-Bonnet

Then, two Teleparallel Gauss-Bonnet invariants appear in the
Teleparallel framework. TG is a topological invariant in 4D and BG is a
boundary term (in all dimensions).

That means that in Teleparallel gravity, there are more ways to
construct a scalar Gauss-Bonnet theory. We then propose, 6

STsGB =
1

2κ2

∫ [
− T − 1

2
β ∂µψ∂

µψ + α1G1(ψ)TG + α2G2(ψ)BG

]
e d4x ,

This theory reproduces the Riemannian case in the limit G1 = G2 = G
and α1 = α2 = α.
For other coupling cases, the theory is different from the Riemannian
case.

6
S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, Phys. Rev. D 107 (2023) no.10, 104013)
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Teleparallel scalar Gauss-Bonnet

It is convenient to re-parametrize the action such that one has the
Riemannian case: (Note again

◦
G = TG +BG)

STsGB =
1

2κ2

∫ [
− T − 1

2
β ∂µψ∂

µψ + α2G2(ψ)(G̊− TG) + α1G1(ψ)TG

]
ed4x

=
1

2κ2

∫ [
R̊− 1

2
β ∂µψ∂

µψ + α2G2(ψ)G̊+ α3G3(ψ)TG

]
ed4x ,

There are three important limiting cases appearing from the above
action:

1 α3 = 0 (or equivalently α1G1(ψ) = α2G2(ψ)): this theory corresponds to
the standard sGB theory.

2 α2 = 0: this theory corresponds to a purely Teleparallel theory where
the dynamics are governed by F (ψ)TG.

3 α3G3(ψ) = −α2G2(ψ) (or equivalently α1 = 0): this theory also
corresponds to a purely Teleparallel theory where the dynamics are
governed by F (ψ)BG.

The second and third cases (α3 ̸= 0) are new in the literature and they
can only exist when one considers Teleparallel gravity.
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Antisymmetric field equations - Solutions

The field equation contains antisymmetric and symmetric part. There
are two different ways to solve the antisymmetric field equations.

Tetrad contains more dof than the metric (two different tetrads can
give rise the same metric - Lorentz dof).
The first branch which solves the antisymmetric equations is
β(r) = iπ n1 , α(r) = π n2 which gives

e(1)aµ =


νA 0 0 0
0 ξB sin θ cosϕ χC cos θ cosϕ −χC sin θ sinϕ
0 ξB sin θ sinϕ χC cos θ sinϕ χC sin θ cosϕ
0 ξB cos θ −χC sin θ 0

 , {ν, ξ, χ} = ±1 .

The second branch branch which solves the antisymmetric equations
is β(r) = iπ

2 + iπ n3 , α(r) =
π
2 + π which gives

e(2)aµ =


0 iξB 0 0

iνA sin θ cosϕ 0 −χC sinϕ −χC sin θ cos θ cosϕ
iνA sin θ sinϕ 0 χC cosϕ −χC sin θ cos θ sinϕ
iνA cos θ 0 0 χC sin2 θ

 , {ν, ξ, χ} = ±1 .
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Black holes in Teleparallel sGB - Spontaneous scalarization

The theory gives us the possibility to have such an unstable mode if

−4α3G̈3(ψ0) + 6α2G̈2(ψ0) + 5βM2

20βM3
< 0 .

If we choose α3 = 0 we recovered the well-known sGB result.
For our theory, spontaneous scalarization can occur in our theory for
a much larger choice of parameters for different masses.
Contrary to the sGB case, where scalarization of non-rotating black
holes was possible only for α2 < 0, we can have scalarization for
different signs of the coupling parameters.
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Black holes in Teleparallel sGB - expansion around horizon

When α3Ġ3 ̸= α2Ġ2, the scalar field at the horizon must satisfy 7

ψ′
H =

rH

4(α2Ġ2 − α3Ġ3)

(
1±

1

β

[
β2 +

32(α3Ġ3 − α2Ġ2)

r8H

{
32α2

3Ġ2
3(α3Ġ3 − α2Ġ2)

+βr4H(3α2Ġ2 + α3Ġ3)
}]1/2)

−
8α3Ġ3

βr3H
.

This branch gives the correct condition for the Riemannian sGB case
(α3 = 0) that has been used widely in the literature to solving the
equations numerically:

ψ′
H =

1

4α2rH Ġ2

[
r2H ±

√
r4H − 96α2

2Ġ2
2

β

]
.

This analysis suggests that there are two different branches in
Teleparallel sGB having asymptotically flat scalarized black hole
configurations.

7
S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, Phys. Rev. D 107 (2023) no.10, 104013
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Black holes in Teleparallel sGB - Numerical solutions

By Taking β = 4 (kinetic constant), and setting the background value
of the scalar field to zero, we have two coupling constants α2 and α3

and two coupling functions G2 and G3.

We have decided to fix the two coupling functions in the following form

G2(ψ) =
1

12

(
1− e−6ψ2

)
= G3(ψ) .

This exponential function has one of the desired properties for
scalarization, namely, it allows the GR solutions with a zero scalar
field to be also solutions of the more general system of equations in
Teleparallel gravity.
For this coupling, it was proven 8 that stable scalarized black hole
solutions exist in the sGB case.

8D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120 (2018) no.13, 131103
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By Taking β = 4 (kinetic constant), and setting the background value
of the scalar field to zero, we have two coupling constants α2 and α3
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We have decided to fix the two coupling functions in the following form

G2(ψ) =
1

12

(
1− e−6ψ2

)
= G3(ψ) .

This exponential function has one of the desired properties for
scalarization, namely, it allows the GR solutions with a zero scalar
field to be also solutions of the more general system of equations in
Teleparallel gravity.
For this coupling, it was proven 8 that stable scalarized black hole
solutions exist in the sGB case.

8D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120 (2018) no.13, 131103
Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 22 / 30



Black holes in Teleparallel sGB - Numerical solutions

Having fixed G2 and G3, the only theory parameters left to vary are α2

and α3 and more precisely, their relative weight. The following two
cases are especially interesting, since they are purely Teleparallel, i.e.
the scalarization is triggered by torsion:

1 α2 = 0 while α3 ̸= 0, the modification of GR comes only from the
Teleparallel topological invariant TG;

2 α2G2 + α3G3 = 0, the modification of GR comes only from the additional
Teleparallel boundary BG.

In either of these two limiting cases, no contribution of the
Riemannian Gauss-Bonnet term is present.

These cases go beyond the classification of theories allowing for
scalarization that is discussed in a recent Review9

9D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou and S. S. Yazadjiev,
[arXiv:2211.01766 [gr-qc]].
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Numerical solutions - Mass and scalar charge case 1
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Figure: Setting α2 = −1 (the Riemannian sGB) and varying α3

With the increase of α3 the point of bifurcation from the GR branch
moves to large masses.

For larger α3, the branch of scalarized solutions disappears at smaller
masses.
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Numerical solutions - Mass and scalar charge case 2
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Figure: Setting α3 = 1 (the Teleparallel part) and varying α2

Contrary to the previous figure, larger α2 move the bifurcation point to
smaller masses

Even though this case offers a completely new type of scalarization,
the behaviour of the solutions branches is qualitatively very similar to
the sGB theory
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New results with different couplings

Last month, we finished a new study within this theory10 and we found
that the real tetrad seems to be incompatible for constructing
scalarized black holes.

We concentrated again on the complex tetrad and we explored two
popular coupling functions:

Gi = ψ where the GR black holes are not solutions of the field equations
and the black holes are always endowed with scalar hair; (shift
symmetry)
Gi = ψ2, which leads to black hole scalarization, i.e. Schwarzschild
black hole is always a solution of the field equations but for small black
hole masses, it becomes unstable giving rise to a spontaneously
scalarized branch of solutions.

Even though simpler compared to the exponential coupling
considered before, the second choice leads to unstable black hole
solutions in the Riemannian Gauss-Bonnet case. Interestingly, this
observation might change for a strong enough torsional contribution.

10
S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, [arXiv:2307.14720 [gr-qc]]. To appear in PRD.
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Scalarized Black holes Gauss-Bonnet - Shift symmetric G2 = G3 = ψ

Recall that when Gi = ψ, ψ = const is not a solution of the field
equations. Thus, the black holes are always endowed with scalar hair.

In addition, the field equations are invariant under a simultaneous
change of signs of the coupling parameters α2, α3, and the scalar
field ψ (ψ → ψ + α).
Main results for this coupling:

1 The scalar charge D can be positive/negative leading to a range of
parameters where the scalar charge is practically vanishing.

2 In such cases, we have black hole solutions with vanishing scalar
charge but nonzero scalar field close to the black hole horizon.

3 Such compact objects would not emit scalar gravitational radiation,
despite their sometimes large deviation from GR.

4 This has interesting implications: For example, if put in a binary, such a
black hole will emit only very little scalar dipole radiation while the
scalar field might influence the binary dynamics significantly.
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Scalarized Black holes Gauss-Bonnet - Quadratic coupling G2 = G3 = ψ2

Quadratic couplings is often avoided in numerical simulations since, in
the Riemannian case at least, it leads to unstable black hole solutions.

In addition, the branches of solutions are terminated shortly after the
bifurcation point.
In this case the GR-like black holes with zero scalar field are always
solutions of the field equations and only in a certain range of black
hole masses do additional scalarized solutions appear.
Main results for this coupling:

1 Interestingly, for certain combinations of α2 and α3, predominantly
when the pure teleparallel term is stronger, the branch of solutions turn
left after the bifurcation point instead of turning right. =⇒ indication of
stable solutions!

2 Another indication of stability: The horizon radius of the scalarized
black holes, in this case, gets larger than the GR one contrary to all
branches that turn right after bifurcation.

3 our results indicate that the pure teleparallel term might potentially lead
to a stabilization of the black holes for pure quadratic coupling.
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Conclusions and future works

Teleparallel offers a new way for studying BH endowed with hairs
that can have different properties as in the Riemannian sector.

We have found new interesting hairy black hole solutions with
spontaneous scalarization process hair which are sourced by
torsion.
Future work:

1 Are these solutions stable or not? we need to develop a perturbation
theory for black holes in TG.

2 Can the Tele Gauss-Bonnet theory be used for studying binary of
black holes?

3 What happens with spontenous scalarization for neutron stars?
4 Within Symmetric TG, can one construct similar scalarization with the

new Gauss-Bonnet that we derived?
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