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Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̂ρµν (64
comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

Γ̂λ µν =

Levi-Civita︷ ︸︸ ︷
Γ̊λ µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ µν − T(µ

λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ µν −Q(µ

λ
ν) , (1)

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ
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Tetrads and spin connection

Notation: µ, ν, α, ..: space-time; a, b, c, A,B,C, ..: tangent space.
Γ̊: Levi-Civita, Γ: Teleparallel connection;Γ̃: General connection.

Tetrads (or vierbein) eaµ are linear basis on the spacetime manifold,
and at each point of the spacetime, tetrads gives us basis for vectors
on the tangent space.
Tetrads satisfy the orthogonality condition; emµenµ = δnm and
em

νemµ = δνµ and the metric and its inverse can be reconstructed via

Metric and tetrads

gµν = ηabe
a
µe
b
ν , gµν = ηabea

µeb
ν

where ηab is the Minkowski metric.
Quantities denoted with a circle on top ◦ denote that they are defined
with respect to the Levi-Civita connection and hats are general affine
connection.
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Curvature tensor

The curvature becomes

R̃µνρσ = R̊µνρσ + ∇̊ρD̃
µ
νσ − ∇̊σD̃

µ
νρ + D̃µ

τρD̃
τ
νσ − D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci scalar
R̃ = gµνR̃ρµρν we find

Ricci scalar decomposition

R̃ = R̊+
(
T + 2∇̊µ(

√
−gT ρρµ)

)
+
(
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −
1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α −
1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .
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Teleparallel equivalent of GR

Teleparallel equivalent of GR (TEGR) assumes zero curvature and
zero nonmetricity so that

Ricci scalar TEGR
R = 0 = R̊+

(
T + 2∇̊µ(

√
−gT ρ

ρ
µ)
)
+
((((((((((((
Q+ ∇̊µQ

µν
ν − ∇̊νQµ

µν
)
+�C ,

⇐⇒ R̊ = −T + ∇̊µ(
√
−gT ρ

ρ
µ) := −T +B .

Then, TEGR is constructed from the torsion scalar T

(torsional) Teleparallel equivalent of GR (TEGR) action

STEGR =

∫ [
− 1

2κ2
T + Lm

]
e d4x .

Since R̊ differs by T by a boundary term B, the equations of TEGR
are equivalent to the Einstein’s field equations.
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Connection in Teleparallel gravity

GR assumes zero torsion and non-zero curvature (Levi-Civita
connection) whereas Teleparallel gravity (TG) assumes zero
curvature and non-zero torsion. Both assumes non-metricity to be
zero, meaning ∇̃αgµν = 0.

TG has a different connection known as “Weitzenböck connection”,
defined as

Weitzenböck connection

Γρµν = Ea
ρDµe

a
ν = Ea

ρ(∂µe
a
ν + wabµe

b
ν) .

In TG, it is always possible to find a frame such that ωabµ = 0, but this
is a gauge choice, so only some tetrads are compatible with this1.

1
See for a review: S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann,
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Torsion tensor

The field strength in TG is the torsion tensor that is defined as the
antisymmetric part of the Weitzenböck connection

Torsion tensor

T ρµν = Γρνµ − Γρµν = EA
ρ
(
eAν,µ − eAµ,ν + ωABµe

B
ν − ωABνe

B
µ

)
.

The torsion tensor is generally non-vanishing, and transforms
covariantly under both diffeomorphisms and local Lorentz
transformations.
The pure tetrad formalism was the initial framework used for TG,
which chooses a specific frame where the spin connection ωabµ
vanishes. Be careful choosing the correct tetrad which is compatible
with this gauge.
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Important properties of Teleparallel theories

Teleparallel theories have the tetrads and spin connection as the
fundamental variables, so that, one most commonly assumes an
action which is of the form

S = Sg[e, ω] + Sm[e, χ] ,

where the gravitational part Sg of the action depends on the tetrad eAµ
and the spin connection ωABµ, while the matter part depends on the
tetrad eAµ and arbitrary matter fields χI , but not on the spin
connection.

Particles (bosonic or femionic) follow the standard geodesic equation.
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Important properties of Teleparallel theories

Variations of any action should be taken with respect to both variables
(with the emphasis that the spin connection is non-arbitrary but
always flat).

Since ωABµ is a pure-gauge quantity, it can be shown that the the
antisymmetric part of the field equations arising from variations w/r to
the tetrads eAµ coincides with the variations of the action w/r to ωABµ.
Then, in the Weitzenbock gauge (zero spin connection), it is sufficient
to: 2

δeS =⇒ E(µν) = κ2Θµν , E[µν] = 0 , (2)

then, we have 10 + 6 dof of the tetrad in the symmetric+antisymmetric
field equations.

2M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, Phys. Rev. D 97 (2018) no.10, 104042
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2M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, Phys. Rev. D 97 (2018) no.10, 104042
Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 11 / 56



Spherical Symmetry in Teleparallel gravity

In TG, all the dynamics can be put in the tetrad and the spin connection can be set to be zero.

We assume that the connection and metric have the same symmetries:

LZζ
eA µ = −λAζ Be

B
µ , LZζ

ωA
Bµ = ∂µλ

A
ζ B + ωA

Cµλ
C
ζ B − ωC

Bµλ
A
ζ C . (3)

The most general tetrad satisfying spherical symmetry in the Weitzenbock gauge (zero spin
connection) is 3

e
A

ν =


C1 C2 0 0

C3 sin θ cosϕ C4 sin θ cosϕ C5 cos θ cosϕ − C6 sinϕ − sin θ(C5 sinϕ + C6 cos θ cosϕ)
C3 sin θ sinϕ C4 sin θ sinϕ C5 cos θ sinϕ + C6 cosϕ sin θ(C5 cosϕ − C6 cos θ sinϕ)

C3 cos θ C4 cos θ −C5 sin θ C6 sin2 θ

 ,

where Ci = Ci(t, r).

Using gµν = ηABe
A

µeBν , we have that the metric is

ds2 =
(
C2

1 − C2
3

)
dt2 − 2(C3C4 − C1C2) dtdr −

(
C2

4 − C2
2

)
dr2

−
(
C2

5 + C2
6

)
(dθ2 + r2 sin2 θdϕ2) ,

where we have cross-terms.

3M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, Phys. Rev. D 100 (2019) no.8, 084002
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Spherical Symmetry in Teleparallel gravity

Without losing generality, we can choose a coordinate system such
that the cross term vanishes. This can be easily done by taking the
following reparametrization:

C1(r) = νA(r) coshβ(r) , C3(r) = νA(r) sinhβ(r) ,

C4(r) = ξB(r) coshβ(r) , C2(r) = ξB(r) sinhβ(r) ,

C5(r) = χC(r) cosα(r) , C6(r) = χC(r) sinα(r) ,

with {ν, ξ, χ} being ±1. This tetrad gives the metric in the standard
form in spherical coordinates:

ds2 = A(r)2 dt2 −B(r)2 dr2 − C(r)2(dθ2 + sin2 θdϕ2) .

Note that β(r), α(r) are tetrad dof (they do not appear in the metric).
They can be set by solving the antisymmetric field equations.
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Overview of the Talk

1 Brief Introduction to Teleparallel theories of gravity

2 Generic properties of Teleparallel Theories

3 Black holes in f(T ) gravity

4 Black holes in 1-parameter New General Relativity

5 Teleparallel scalar Gauss-Bonnet gravity
Scalar-Gauss Bonnet gravity
Teleparallel Gauss-Bonnet

6 Towards Black Holes sourced by Nonmetricity
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No-hair Theorem

In General Relativity, there is theorem called “No-hair theorem” which
states that black holes do not have hair.

That means that black holes are described only by three parameters:
its mass M , angular momentum J (if it is rotating) and a charge Q
(which is though that it is almost zero for a astrophysical BH).
Only with those three parameters, one can predict all effects related to
the black hole.
The solution of the metric is the so-called Kerr-Newmann metric which
describes an axially rotating black hole solution with a charge.
This is a theorem, meaning that in GR, this is the unique
asymptotically flat black hole solution. In spherical symmetry, it is just
Schwarzschild.
Is it possible that black holes have hair? One needs to go beyond GR,
either by having modified gravity or allowing extra degrees of freedom
such as scalar fields coupled to gravity.
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f(T ) gravity

Inspired from f(R̊) gravity, Ferraro and Fiorini4 introduced another
teleparallel theory by generalising T → f(T ) in the action:

f(T ) gravity action

Sf(T ) =

∫
f(T )e d4x .

The torsion scalar T depends on the first derivatives of the tetrads →
Second order theory:

Not equivalence between f(R̊) and f(T )

Field equations of f(T ) ̸= Field equations of f(R̊)

4R. Ferraro and F. Fiorini, Phys. Rev. D 75 (2007), 084031.
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Antisymmetric field equations - Solutions

The field equation contains antisymmetric and symmetric part. There
are two different ways to solve the antisymmetric field equations.

Tetrad contains more dof than the metric (two different tetrads can
give rise the same metric - Lorentz dof).
The first branch which solves the antisymmetric equations is
β(r) = iπ n1 , α(r) = π n2 which gives

e(1)aµ =


νA 0 0 0
0 ξB sin θ cosϕ χC cos θ cosϕ −χC sin θ sinϕ
0 ξB sin θ sinϕ χC cos θ sinϕ χC sin θ cosϕ
0 ξB cos θ −χC sin θ 0

 , {ν, ξ, χ} = ±1 .

The second branch branch which solves the antisymmetric equations
is β(r) = iπ

2 + iπ n3 , α(r) =
π
2 + π which gives

e(2)aµ =


0 iξB 0 0

iνA sin θ cosϕ 0 −χC sinϕ −χC sin θ cos θ cosϕ
iνA sin θ sinϕ 0 χC cosϕ −χC sin θ cos θ sinϕ
iνA cos θ 0 0 χC sin2 θ

 , {ν, ξ, χ} = ±1 .
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Born-Infield f(T ) Black-Hole Solution

A quite well-studied theory inspired by Born-Infield
electromagnetism is

f(T ) = λ
(√

1 +
2T

λ
− 1
)
,

with λ being the so-called Born-Infeld parameter. It is easy to notice
that when T/λ≪ 1, one obtains f(T ) = T − T 2/(2λ) +O(1/λ2).

We found an exact black hole solution to this theory 5

ds2 =
a21
r

[√
λ(a0λ+ r)− 2 tan−1

(√
λr

2

)]
dt2

− λ5/2r5

(4 + r2λ)2

[√
λ(a0λ+ r)− 2 tan−1

(√
λr

2

)]−1

dr2 − r2dΩ2 .

5
S. Bahamonde, A. Golovnev, M. J. Guzmán, J. L. Said and C. Pfeifer, JCAP 01 (2022) no.01, 037
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Born-Infield f(T ) Black-Hole Solution

One can set a21 = 1/
√
λ to get asymptotically flatness. Further, if we

choose a0 = −2M/λ and expands the metric up to O(1/λ2), we find

ds2 =
[
1− 2M

r
+

4

λr2
− π√

λr

]
dt2

−
[
1− 2M

r
− 16M

λr3
+

12

λr2
− π√

λr

]−1

dr2 − r2dΩ2 +O(1/λ2) .

This is a generalization of a Schwarzschild black hole with one
horizon rh = 2M + π√

λ
− 2M

λ +O(1/λ2).
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Born-Infield f(T ) Black-Hole Solution

It is also useful to calculate the Komar mass M for this spacetime which is related to the force
needed by an observer at infinity to keep a spherical uniform mass distribution.

For that, one must assume the existence of a timelike Killing vector field µ = {1, 0, 0, 0} and a
spacelike hypersurface Σt from the event horizon to spatial infinity in a constant slice t whose
normal vector is nµ = {−√

gtt, 0, 0, 0}. Then, the Komar mass reads

M = −
1

8π

∫
St

◦
∇µdSµ , (4)

where St is the 2-boundary of Σt and dSµ is the surface element of St which is
dSµ = −2n[µσ]

√
hdθdϕ with h = r2 sin θ being the determinant of the 2-dimensional metric on

St and σµ = {0,√grr, 0, 0}.

For our solution we find 6

M =
1

8π
lim

r→∞

∫ π

θ=0

∫ 2π

ϕ=0

r2g′tt√
gttgrr

sin θ =
( π
2λ

+ 1
)
M . (5)

6S. Bahamonde, S. Faraji, E. Hackmann and C. Pfeifer, Phys. Rev. D 106 (2022)
no.8, 08404
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Born-Infield f(T ) Black-Hole Solution
Expanding the metric for large r

M
to study the weak field limit gives

−gtt = 1−
2M

r

(
1 +

π

2λ

)
+

4M2

r2λ2
+O(r−4) , (6)

grr = 1 +
2M

r

(
1 +

π

2λ

)
+O(r−2). (7)

Comparing this expression to the standard PPN expansion

−gtt = 1−
2M̂

r
+ (β − γ)

2M̂2

r2
(8)

grr = 1 + γ
2M̂

r
, (9)

where M̂ = Gm/c2 and m is the Newtonian mass, we find consistently that M̂ = M.

Thus, γ = 1 agrees with its GR value; however

(β − 1) =
8

π2

(
1−

M

M̂

)2
=

8

(2λ+ π)2
, (10)

attains a correction. Using the observational bound that |β − 1| < 10−4, we find λ ≳ 140.
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Born-Infield f(T ) Black-Hole Solution - Thick accretion disks

In general, for larger values of λ we have smaller disk configurations,
which means the size of the disk is a monotonically decreasing
function of λ.

However, the influence of the teleparallel parameter λ on the shape of
the accretion disk is nearly invisible for λ ≳ 140.
To quantify this effect we considered the difference in equipotential
δW between the cusp and the center of an accretion disk and
compared it to the value in Schwarzschild spacetime, for λ ≳ 140.
It turns out that ∆W = δWλ − δWSch < 0.00002, while for an extremal
Kerr black hole we obtain ∆W = δWKerr − δWSch ≈ 0.51.
Hence the influence of rotation on the accretion disk is way larger
than the influence of the teleparallel parameter.
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Born-Infield f(T ) Black-Hole Solution - Thick accretion disks

We consider a Thick disk model based on the constant angular momentum and the perfect fluid
energy-momentum tensor.

In addition, it is assumed that the influence of the disk on the underlying spacetime is negligible.

The Thick disk model is a description of an accretion disk which is governed by a strong
gravitational field and the pressure within the perfect fluid in the fixed specified background.

Moreover, this model is axisymmetric and stationary:

uµ = (ut, 0, 0, uϕ) , (11)

Tµ
ν = (ϵ+ p)uνu

µ + δµνp , (12)

where ut =
√

gttgϕϕ

l2gtt+gϕϕ
and l is a constant of motion l = L

E
; Ω = uϕ

ut is the angular velocity.

We end up with

− ln
|ut|

|(ut)in|
+

∫ l

lin

Ωdl

1− Ωl
=

∫ p

pin

dp

ϵ+ p
=:Win −W, (13)

where (ut)in, pin and lin refer to the value of these quantities at the inner edge of the disk.

W provides the equipotential surfaces topology of the disk.
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Born-Infield f(T ) Black-Hole Solution - Thick accretion disks

λ = 10 λ = 140

λ = 500 λ = ∞

Figure: Equipotential surfaces for different choices of λ and constant angular momentum. Green line:torus with a cusp; Blue
lines indicate closed tori; red lines bound structures without inner edge; and black lines open surfaces.
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Born-Infield f(T ) Black-Hole Solution - S2 and Shadow

Born-Infeld f(T ) black hole solution consistent with S2 star observations after a
Monte-Carlo-Markov Chains analysis. 7

Shadow images of Sgr A⋆ black hole: Angular diameter of the Born-Infeld f(T ) gravity is

consistent with the observation and could not be distinguished from the Schwarzschild black

hole in GR by the present technology.

7
K. Jusufi, S. Capozziello, S. Bahamonde and M. Jamil, Eur. Phys. J. C 82 (2022) no.11, 1018
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New General Relativity (NGR)

The torsion tensor can be decomposed in its irreducible parts as

aµ =
1

6
ϵµνσρT

νσρ , vµ = T σσµ ,

tσµν =
1

2
(Tσµν + Tµσν) +

1

6
(gνσvµ + gνµvσ)−

1

3
gσµvν ,

where ϵµνσρ is the totally anti-symmetric Levi-Civita symbol.
From these we build the scalars

Tax = aµa
µ , Tvec = vµv

µ , Tten = tσµνt
σµν ,

and the torsion scalar is a linear combination

T =
3

2
Tax +

2

3
Tten −

2

3
Tvec .
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New General Relativity (NGR)

The first Teleparallel modification was introduced in 19798, and it is
labelled as New General Relativity. Its action reads

New General Relativity action

SNGR =
1

2κ2

∫
d4x
[
c1Tvec + c2Tax + c3Tten

]
e .

If c1 = −2
3 , c2 =

3
2 , c3 =

2
3 , the above action is equivalent to the TEGR

one.

8K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979), 3524-3553
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New General Relativity (NGR)

The theory has ghosts unless cten + cvec = 0, which gives the
so-called 1-parameter New GR theory:

S1NGR =
1

2κ2

∫
d4xe(T + ϵ Taxi) , (14)

where
cvec = −2

3
, cten =

2

3
, caxi =

3

2
+ ϵ . (15)

This theory has the same Post-Newtonian parameters as GR (for any
value of ϵ) and moreover, the theory predicts two polarization modes
as in GR.
This modification might be indistinguishable from GR, or not?

Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 29 / 56



New General Relativity (NGR)

The theory has ghosts unless cten + cvec = 0, which gives the
so-called 1-parameter New GR theory:

S1NGR =
1

2κ2

∫
d4xe(T + ϵ Taxi) , (14)

where
cvec = −2

3
, cten =

2

3
, caxi =

3

2
+ ϵ . (15)

This theory has the same Post-Newtonian parameters as GR (for any
value of ϵ) and moreover, the theory predicts two polarization modes
as in GR.

This modification might be indistinguishable from GR, or not?

Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 29 / 56



New General Relativity (NGR)

The theory has ghosts unless cten + cvec = 0, which gives the
so-called 1-parameter New GR theory:

S1NGR =
1

2κ2

∫
d4xe(T + ϵ Taxi) , (14)

where
cvec = −2

3
, cten =

2

3
, caxi =

3

2
+ ϵ . (15)

This theory has the same Post-Newtonian parameters as GR (for any
value of ϵ) and moreover, the theory predicts two polarization modes
as in GR.
This modification might be indistinguishable from GR, or not?

Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 29 / 56



New General Relativity (NGR) - Spherically Symmetric solutions

The antisymmetric field equation can be solved in 3 different ways giving three branches. Recall
α(t, r), β(t, r) are the tetrad extra dof. (Bahamonde et. al arXiv:2308.1XXX)

First Branch: We showed a Birkhoff’s theorem: Schwarzschild is the unique solution for the
metric but tetrad function β(t, r) is totally arbitrary.
Third Branch: We managed to find solutions but it is always Schwarzschild with non-trivial
tetrad functions. are those solutions interesting for quasinormal modes?
Second Branch: We found an exact Black hole solution given by:

ds2 =
(
1−

2M

r

)
dt2 −

(
1−

2M

r

)−1
h(α, ϵ)dr2 − r2dΩ2 , (16)

where

h(α, ϵ) =
(
1−

4

9
ϵ [cos (2α)− 1]

)−1
, (17)

and ish is non-asymptomatically flat.
Note that the Komar mass is

M =M

√
1 +

8

9
ϵ sin2(α0) . (18)
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New General Relativity (NGR) - Black hole shadow
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Figure: Observed images for the ISCO disk model (top two rows) and the EH disk model (bottom row rows) with inclination
angle of 0◦ (top) and 80◦ (bottom), for δ̄ = {−2;−1; 0; 0.5; 0.7}, from left to right (h = 1

1−δ̄
).
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Scalar Gauss-Bonnet

One can then modify the theory by having new terms in the action.
New possible curvature invariants can be added and the first ones
that one could think are quadratic contractions of curvature.

In Riemannian gravity, there is a topological invariant in 4D (does not
contribute to the field equations), which is known as the
Gauss-Bonnet invariant defined as

◦
G =

◦
Rαβµν

◦
Rαβµν − 4

◦
Rαβ

◦
Rαβ +

◦
R2 .

This means that the theory

SGR =

∫ [
1

2κ2
R̊+ α

◦
G

]√
−g d4x

gives the Einstein’s field equations.
However, if one allows couplings between the Gauss-Bonnet invariant
and a scalar field, then the field equations will not be longer
equivalent to GR.
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Scalar Gauss-Bonnet

The Scalar Gauss-Bonnet (sGB) gravity theory is described by the
following action

SsGB =
1

2κ2

∫ [ ◦
R− 1

2
β ∂µψ∂

µψ + αG(ψ)
◦
G
]√

−g d4x .

If G(ψ) = 1, then we just have GR. Equivalently, if ψ = const, we just
have GR.
For G(ψ) ̸= const, the field equations are not longer GR. For example
the scalar-field equation is

β
◦
□ψ + αĠ(ψ)

◦
G = 0 , (19)

where Ġ(ψ) = dG/dψ.

Note:
◦
R = 0 in Schwarzschild but

◦
G ̸= 0. That property would be

important to understand the difference between this model and the
former one.
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where Ġ(ψ) = dG/dψ.

Note:
◦
R = 0 in Schwarzschild but

◦
G ̸= 0. That property would be

important to understand the difference between this model and the
former one.

Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 34 / 56



Scalar Gauss-Bonnet and Spontaneous scalarization

It has been shown (numerically) that for some particular coupling functions, there are
asymptotically flat scalarized black hole solutions where the scalar charge emerges from a
mechanism called Spontaneous scalarization.

In this process, the predictions of the theory match the predictions of GR in the weak field
regime but differ in the strong field regime.

The described black hole coincides with Schwarzschild one for weak gravitational fields when
the spacetime curvature near the horizon is too weak to source the scalar field.

For strong gravitational fields at the horizon, that realizes when the black hole mass M falls
below a certain threshold, the Schwarzschild solution becomes unstable and a non-trivial scalar
field emerges.

Thus the solution bifurcates to a different black hole solution with scalar hair.

This transition is usually smooth in sGB and shares similarities with second order phase

transitions.
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Scalar fields non-minimally coupled to Torsion

In our previous paper9, we studied Teleparallel theories with a scalar
field, for example10:

S =
1

2κ2

∫
M

[
−A(ψ)T − C̃(ψ)B − 1

2
B(ψ)∂µψ∂µψ − 2κ2V(ψ)

]√
−g d4x ,

where X = −1
2g
µν∂µψ∂νψ.

Since
◦
R = −T +B, when A(ψ) = −C̃(ψ) the above theory is exactly

the same as the standard non-minimally one.
We found new exact black hole solutions (some of them different to
the Riemannian case), but they seem to be not so much interesting
phenomenologically.

9
S. Bahamonde, L. Ducobu and C. Pfeifer, JCAP 04 (2022) no.04, 018

10
S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034; M. Zubair, S. Bahamonde and M. Jamil, Eur. Phys. J.

C 77 (2017) no.7, 472; M. Hohmann and C. Pfeifer, Phys. Rev. D 98 (2018) no.6, 064003.
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Scalar fields non-minimally coupled to Torsion

In our previous paper9, we studied Teleparallel theories with a scalar
field, for example10:

S =
1

2κ2

∫
M

[
−A(ψ)T − C̃(ψ)B − 1

2
B(ψ)∂µψ∂µψ − 2κ2V(ψ)

]√
−g d4x ,

where X = −1
2g
µν∂µψ∂νψ.

Since
◦
R = −T +B, when A(ψ) = −C̃(ψ) the above theory is exactly

the same as the standard non-minimally one.

We found new exact black hole solutions (some of them different to
the Riemannian case), but they seem to be not so much interesting
phenomenologically.

9
S. Bahamonde, L. Ducobu and C. Pfeifer, JCAP 04 (2022) no.04, 018

10
S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034; M. Zubair, S. Bahamonde and M. Jamil, Eur. Phys. J.

C 77 (2017) no.7, 472; M. Hohmann and C. Pfeifer, Phys. Rev. D 98 (2018) no.6, 064003.
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Teleparallel scalar Gauss-Bonnet

Then, two Teleparallel Gauss-Bonnet invariants appear in the
Teleparallel framework. TG is a topological invariant in 4D and BG is a
boundary term (in all dimensions).

That means that in Teleparallel gravity, there are more ways to
construct a scalar Gauss-Bonnet theory. We then propose, 11

STsGB =
1

2κ2

∫ [
− T − 1

2
β ∂µψ∂

µψ + α1G1(ψ)TG + α2G2(ψ)BG

]
e d4x ,

This theory reproduces the Riemannian case in the limit G1 = G2 = G
and α1 = α2 = α.
For other coupling cases, the theory is different from the Riemannian
case.

11
S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, Phys. Rev. D 107 (2023) no.10, 104013)
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Teleparallel scalar Gauss-Bonnet

It is convenient to re-parametrize the action such that one has the
Riemannian case: (Note again

◦
G = TG +BG)

STsGB =
1

2κ2

∫ [
− T − 1

2
β ∂µψ∂

µψ + α2G2(ψ)(G̊− TG) + α1G1(ψ)TG

]
ed4x

=
1

2κ2

∫ [
R̊− 1

2
β ∂µψ∂

µψ + α2G2(ψ)G̊+ α3G3(ψ)TG

]
ed4x ,

There are three important limiting cases appearing from the above
action:

1 α3 = 0 (or equivalently α1G1(ψ) = α2G2(ψ)): this theory corresponds to
the standard sGB theory.

2 α2 = 0: this theory corresponds to a purely Teleparallel theory where
the dynamics are governed by F (ψ)TG.

3 α3G3(ψ) = −α2G2(ψ) (or equivalently α1 = 0): this theory also
corresponds to a purely Teleparallel theory where the dynamics are
governed by F (ψ)BG.

The second and third cases (α3 ̸= 0) are new in the literature and they
can only exist when one considers Teleparallel gravity.
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Black holes in Teleparallel sGB - Spontaneous scalarization

The theory gives us the possibility to have such an unstable mode if

−4α3G̈3(ψ0) + 6α2G̈2(ψ0) + 5βM2

20βM3
< 0 .

If we choose α3 = 0 we recovered the well-known sGB result already
explained.
For our theory, spontaneous scalarization can occur in our theory for
a much larger choice of parameters for different masses.
Contrary to the sGB case, where scalarization of non-rotating black
holes was possible only for α2 < 0, we can have scalarization for
different signs of the coupling parameters.
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Black holes in Teleparallel sGB - expansion around horizon

When α3Ġ3 ̸= α2Ġ2, the scalar field at the horizon must satisfy 12

ψ′
H =

rH

4(α2Ġ2 − α3Ġ3)

(
1±

1

β

[
β2 +

32(α3Ġ3 − α2Ġ2)

r8H

{
32α2

3Ġ2
3(α3Ġ3 − α2Ġ2)

+βr4H(3α2Ġ2 + α3Ġ3)
}]1/2)

−
8α3Ġ3

βr3H
.

This branch gives the correct condition for the Riemannian sGB case
(α3 = 0) that has been used widely in the literature to solving the
equations numerically:

ψ′
H =

1

4α2rH Ġ2

[
r2H ±

√
r4H − 96α2

2Ġ2
2

β

]
.

This analysis suggests that there are two different branches in
Teleparallel sGB having asymptotically flat scalarized black hole
configurations.

12
S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, Phys. Rev. D 107 (2023) no.10, 104013
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32(α3Ġ3 − α2Ġ2)
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3(α3Ġ3 − α2Ġ2)
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Black holes in Teleparallel sGB - Numerical solutions

By Taking β = 4 (kinetic constant), and setting the background value
of the scalar field to zero, we have two coupling constants α2 and α3

and two coupling functions G2 and G3.

We have decided to fix the two coupling functions in the following form

G2(ψ) =
1

12

(
1− e−6ψ2

)
= G3(ψ) .

This exponential function has one of the desired properties for
scalarization, namely, it allows the GR solutions with a zero scalar
field to be also solutions of the more general system of equations in
Teleparallel gravity.
For this coupling, it was proven 13 that stable scalarized black hole
solutions exist in the sGB case.

13D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120 (2018) no.13, 131103
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Black holes in Teleparallel sGB - Numerical solutions

Having fixed G2 and G3, the only theory parameters left to vary are α2

and α3 and more precisely, their relative weight. The following two
cases are especially interesting, since they are purely Teleparallel, i.e.
the scalarization is triggered by torsion:

1 α2 = 0 while α3 ̸= 0, the modification of GR comes only from the
Teleparallel topological invariant TG;

2 α2G2 + α3G3 = 0, the modification of GR comes only from the additional
Teleparallel boundary BG.

In either of these two limiting cases, no contribution of the
Riemannian Gauss-Bonnet term is present.

These cases go beyond the classification of theories allowing for
scalarization that is discussed in a recent Review14

14D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou and S. S. Yazadjiev,
[arXiv:2211.01766 [gr-qc]].
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Black holes in Teleparallel sGB - Numerical solutions

To solve the equations numerically we used a fourth order
Runge-Kutta method.

We used the boundary condition derived before (at the horizon) and
also we only concentrated on finding asymptotically flat solutions.
First, In order to gain some intuition about the existence and behavior
of black hole solutions let us start with discussing the bifurcation point,
which corresponds to the point where Schwarzschild becomes
unstable and new scalarized solutions originate, as well as the
behavior of the scalarized black hole branches.
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Numerical solutions - Mass and scalar charge case 1
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Figure: Setting α2 = −1 (the Riemannian sGB) and varying α3

With the increase of α3 the point of bifurcation from the GR branch
moves to large masses.

For larger α3, the branch of scalarized solutions disappears at smaller
masses.
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Numerical solutions - Mass and scalar charge case 2
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Figure: Setting α3 = 1 (the Teleparallel part) and varying α2

Contrary to the previous figure, larger α2 move the bifurcation point to
smaller masses

Even though this case offers a completely new type of scalarization,
the behaviour of the solutions branches is qualitatively very similar to
the sGB theory
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New results with different couplings

Last week, we just finished a new study within this theory15 and we
found that the real tetrad seems to be incompatible for constructing
scalarized black holes.

We concentrated again on the complex tetrad and we explored two
popular coupling functions:

Gi = ψ where the GR black holes are not solutions of the field equations
and the black holes are always endowed with scalar hair; (shift
symmetry)
Gi = ψ2, which leads to black hole scalarization, i.e. Schwarzschild
black hole is always a solution of the field equations but for small black
hole masses, it becomes unstable giving rise to a spontaneously
scalarized branch of solutions.

Even though simpler compared to the exponential coupling
considered before, the second choice leads to unstable black hole
solutions in the Riemannian Gauss-Bonnet case. Interestingly, this
observation might change for a strong enough torsional contribution.

15
S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, [arXiv:2307.14720 [gr-qc]].
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Scalarized Black holes Gauss-Bonnet - Shift symmetric G2 = G3 = ψ

Recall that when Gi = ψ, ψ = const is not a solution of the field
equations. Thus, the black holes are always endowed with scalar hair.

In addition, the field equations are invariant under a simultaneous
change of signs of the coupling parameters α2, α3, and the scalar
field ψ (ψ → ψ + α).
Main results for this coupling:

1 The scalar charge D can be positive/negative leading to a range of
parameters where the scalar charge is practically vanishing.

2 In such cases, we have black hole solutions with vanishing scalar
charge but nonzero scalar field close to the black hole horizon.

3 Such compact objects would not emit scalar gravitational radiation,
despite their sometimes large deviation from GR.

4 This has interesting implications: For example, if put in a binary, such a
black hole will emit only very little scalar dipole radiation while the
scalar field might influence the binary dynamics significantly.
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Scalarized Black holes Gauss-Bonnet - Shift symmetric G2 = G3 = ψ
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Figure: The radius of the horizon (top panels), the scalar charge (middle panels), and the scalar field at the horizon (bottom
panels). Schwarzschild is depicted with a solid black line in the top panels. The pure sGB case corresponds to α2 = −1 and
α3 = 0. (S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer and S. S. Yazadjiev, [arXiv:2307.14720 [gr-qc]].)
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Scalarized Black holes Gauss-Bonnet - Quadratic coupling G2 = G3 = ψ2

Quadratic couplings is often avoided in numerical simulations since, in
the Riemannian case at least, it leads to unstable black hole solutions.

In addition, the branches of solutions are terminated shortly after the
bifurcation point.
In this case the GR-like black holes with zero scalar field are always
solutions of the field equations and only in a certain range of black
hole masses do additional scalarized solutions appear.
Main results for this coupling:

1 Interestingly, for certain combinations of α2 and α3, predominantly
when the pure teleparallel term is stronger, the branch of solutions turn
left after the bifurcation point instead of turning right. =⇒ indication of
stable solutions!

2 Another indication of stability: The horizon radius of the scalarized
black holes, in this case, gets larger than the GR one contrary to all
branches that turn right after bifurcation.

3 our results indicate that the pure teleparallel term might potentially lead
to a stabilization of the black holes for pure quadratic coupling.
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Figure: The radius of the horizon (top panels), the scalar charge (middle
panels), and the scalar field at the horizon (bottom panels) as functions of
mass for a quadratic coupling function.

Sebastian Bahamonde (*) Hairy BH Teleparallel Gravity 52 / 56



Overview of the Talk
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3 Black holes in f(T ) gravity
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Scalar-Gauss Bonnet gravity
Teleparallel Gauss-Bonnet

6 Towards Black Holes sourced by Nonmetricity
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Gauss-Bonnet in Symmetric teleparallel Gravity
Symmetric TG assumes that torsion and curvature are zero and nonmetricity Qαµν = ∇αgµν is
the responsible for gravity.

There is an equivalent description of gravity as GR but purely based on Q (similarly as TEGR).

After a painful computation, we found the corresponding Gauss-Bonnet invariant in the a
generic teleparallel theory (with torsion and nonmetricity):16

G̊ = TG +BG

= δµ ν ρ σ
µ1µ2µ3µ4

[
Nµ1

αµN
αµ2

νN
µ3

βρN
βµ4

σ − 2Nµ1µ2
µN

µ3
ανN

α
βρN

[βµ4]
σ

+2gαβN
µ1µ2

µN
[µ3α]

νN
βµ4

γN
γ
ρσ + 2gαβN

µ1µ2
µN

[µ3α]
νN

βµ4
ρ|σ

+4gαβgγδN
µ1µ2

µN
[µ3α]

νN
µ4γ

ρN
(δβ)

σ

]
.

+
1

√
−g

∂µ

[√
−g δµ ν ρ σ

µ1µ2µ3µ4
Nµ1µ2

ν

(
Nµ3

λρN
λµ4

σ −
1

2
R̊µ3µ4

ρσ

)]
. (20)

where

Nλ
µν = Kλ

µν + Lλ
µν =

1

2

(
Tλ

µν − Tµ
λ

ν − Tν
λ

µ

)
+

1

2

(
Qλ

µν −Qµ
λ

ν −Qν
λ

µ

)
. (21)

16
(Juan Manuel Armaleo; Sebastian Bahamonde, Georg Trenkler, Leonardo G. Trombetta, arXiv:2308.2XXX)
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Gauss-Bonnet in Symmetric teleparallel Gravity

Then, we can focus on the Symmetric teleparallel gravity case (no torsion) and construct new
Gauss-Bonnet theories:

SSTsGB =
1

2κ2

∫ √
−g
[
Q−

1

2
β ∂µψ∂

µψ + α1G1(ψ)T
(Q)
G + α2G2(ψ)B

(Q)
G

]
d4x (22)

Or, a generalization of the modified Gauss-Bonnet but in Symmetric tele:

S
f(Q,BQ,T

(Q)
G

,B
(Q)
G

)
=

∫ √
−gf(Q,BQ, T

(Q)
G , B

(Q)
G )d4x . (23)

After formulating these theories, we would like to explore scalarized BH sourced only by
nonmetricity.

So far, we have found that there are much richer structure in spherical symmetry in the above

theories.
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Conclusions and future works

Teleparallel offers a new way for studying BH endowed with hairs
that can have different properties as in the Riemannian sector.

In the last 2 years, we have found new interesting black hole
solutions with hair which are sourced by torsion.
We have been tested some of them by using astrophysical studies
such as accretion disks or analysing their shadows.
Future work:

1 Are these solutions stable or not? we need to develop a perturbation
theory for black holes in TG.

2 Can the Tele Gauss-Bonnet theory be used for studying binary of
black holes?

3 What happens with spontenous scalarization for neutron stars?
4 Within Symmetric TG, can one construct similar scalarization with the

new Gauss-Bonnet that we derived?
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