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How is the procedure for algebraic classification?

The complete classification of the relevant tensors in Riemannian
geometry is known.

Broadly speaking, the steps followed are:

1 Decompose the curvature tensor into its irreducible modes:

Riemmanian Curvature decomposition

Rλρµν = Wλρµν +
1

2

(
gλµ↗Rρν + gρν↗Rλµ − gλν↗Rρµ − gρµ↗Rλν

)
+

1

6
Rgλ[µgν]ρ ,

#20(Rλρµν) = #10(Wλρµν) + #9(↗Rρν) + #1(R) .

2 Analyse algebraic properties for each mode: One can formulate an
eigenvalue problem whose resolution provides a set of geometric
multiplicities and the different types.

Result in Riemannian geometry: Weyl has 6 types (Petrov
classification); Ricci traceless has 15 types(Segre classification);
What happens in GR in vacuum? ↗Rρν = R = 0 and then the
curvature is fully characterised by the Weyl tensor with their 6 types.
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Why is this classification useful?

Einstein’s field equations are in general difficult to solve and
symmetries are needed for obtain exact solutions.

It is mathematically important to classify the curvature to understand
possible extra symmetries of a system.
Reissner-Nordström and also Kerr-Newman have a very particular
characterisation which is known as Type D. Not only the Weyl tensor
is Type D in those cases but also the Faraday tensor fulfills a similar
property.
The most general Type D solution in Einstein-Maxwell is known as the
Plebański-Demiański characterised by {M,a, α,N} (mass, angular
momentum, acceleration and Nut charge) and the electromagnetic
charges.
Goldberg-Sachs theorem: A vacuum solution of the Einstein’s field
equations admits a shear-free null geodesic congruence if and only if
the conformal part of the Riemann tensor is algebraically special.
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Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) , (1)

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ
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Symmetries and identities of the curvature tensor

Skew symmetry of the last pair of indices of the curvature tensor:

R̃ρσ(µν) = 0 . (2)

Bianchi identities:

R̃λ
[µνρ] = ∇̃[µT

λ
ρν] + Tσ

[µρ T
λ
ν]σ , (3)

∇̃[σ|R̃
λ
ρ|µν] = Tω

[σµ|R̃
λ
ρω|ν] , (4)

R̃(λρ)
µν = ∇̃[νQµ]

λρ +
1

2
Tσ

µνQσ
λρ . (5)

Three independent second order tensors defined from the first contractions
of the curvature tensor:

R̃µν = R̃λ
µλν , R̂µν = R̃µ

λ
νλ , R̃λ

λµν = ∇[νQµ]λ
λ . (6)

Scalar and pseudoscalar contractions:

R̃ = R̃λρ
λρ , ∗R̃ = ελρµνR̃λρµν . (7)

In 4D, R̃ρσµν has #96; Tρσµ has #24; Qρσµ has #40.
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Previous work and last talk at Yukawa Institute
In previous works, we found the first exact spherically symmetric solutions
with dynamical torsion and nonmetricity(JCAP 09 (2020), 057,JCAP 02 (2023), 018):

ds2 = Ψ1(r) dt
2 −

dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

with

Ψ1(r) = Ψ2(r) = 1−
2m

r
+

d1κ2
s − 4e1κ2

d − 2f1κ2
sh

r2
,

having the three possible intrinsic charges: spin κs, dilation κd and shear
κsh.

We also managed to study axial symmetry and found a black hole solution
BUT only when |κ2

sd1| ≪ 1(JCAP 01 (2022) no.01, 011;JCAP 04 (2022) no.04, 011).
The problem in axial symmetry without a decoupling limit is extremely
complicated (24 dof for torsion+40 dof for nonmetricity).
Possible new effects such as gravitational spin-orbit interaction could be
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Curvature decomposition in Metric-Affine geometry

First, we need to find the building blocks of the general curvature
tensor (recall that in Riemannan geometry we had 3: Wαβµν , ↗̃Rµν , R).

We can decompose:

General curvature

R̃λρµν = R̃[λρ]µν + R̃(λρ)µν := W̃λρµν + Z̃λρµν . (8)

We find that there are 11 building blocks:
Building block Number of independent components Limit in Riemannian geometry
(1)Z̃λρµν 30 zero
(1)W̃λρµν 10 Weyl tensor Wλρµν

↗̃R(T )
λ[ρµν]

9 zero

↗̃R(Q)
λ[ρµν]

9 zero

↗̃R(µν) 9 Ricci traceless ↗Rµν

↗̂R(Q)
(µν)

9 zero

R̃
(T )
[µν]

6 zero

R̂
(Q)
[µν]

6 zero

R̃λ
λµν 6 zero
R̃ 1 Ricci scalar R
∗R̃ 1 zero
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Curvature decomposition in Metric-Affine geometry

Using the 11 building blocks, one can express the curvature tensor into its irreducible
decomposition.

Antisymmetric components
R̃[λρ]µν = W̃λρµν = (1)W̃λρµν + (2)W̃λρµν + (3)W̃λρµν + (4)W̃λρµν + (5)W̃λρµν + (6)W̃λρµν :

(1)
W̃λρµν = W̃λρµν −

6∑
i=2

(i)
W̃λρµν , (9)

(2)
W̃λρµν =

3

4

(
↗̃R(T )

λ[ρµν]
+ ↗̃R(T )

ν[λρµ]
− ↗̃R(T )

ρ[λµν]
− ↗̃R(T )

µ[λρν]

)
+

1

2

(
↗̃R(Q)

µ[λρν]
− ↗̃R(Q)

ν[λρµ]

)
, (10)

(3)
W̃λρµν = −

1

24
∗R̃ ελρµν ,

(6)
W̃λρµν =

1

6
R̃ gλ[µgν]ρ , (11)

(4)
W̃λρµν =

1

4

[
gλµ

(
2↗̃R(ρν) + ↗̂R(Q)

(ρν)

)
+ gρν

(
2↗̃R(λµ) + ↗̂R(Q)

(λµ)

)
− gλν

(
2↗̃R(ρµ) + ↗̂R(Q)

(ρµ)

)
− gρµ

(
2↗̃R(λν) + ↗̂R(Q)

(λν)

) ]
, (12)

(5)
W̃λρµν =

1

4

[
gλµ

(
2R̃

(T )
[ρν]

+ R̂
(Q)
[ρν]

)
+ gρν

(
2R̃

(T )
[λµ]

+ R̂
(Q)
[λµ]

)
+ R̃

σ
σλ[µgν]ρ

− gλν

(
2R̃

(T )
[ρµ]

+ R̂
(Q)
[ρµ]

)
− gρµ

(
2R̃

(T )
[λν]

+ R̂
(Q)
[λν]

)
− R̃

σ
σρ[µgν]λ

]
.

Note that the generalised Weyl tensor (1)W̃λρµν has the same symmetries as the Riemannian
Weyl tensor (1)W̃λρµν = − (1)W̃ρλµν = − (1)W̃λρνµ , (1)W̃λ[ρµν] =

(1)W̃λ
µλν = 0.
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Curvature decomposition in Metric-Affine geometry

Symmetric components
R̃(λρ)µν = Z̃λρµν = (1)Z̃λρµν + (2)Z̃λρµν + (3)Z̃λρµν + (4)Z̃λρµν + (5)Z̃λρµν :

(1)Z̃λρµν = Z̃λρµν −
5∑

i=2

(i)Z̃λρµν , (13)

(2)Z̃λρµν =
1

4

(
↗̃R(Q)

λ[ρµν] + ↗̃R(Q)

ρ[λµν]

)
, (14)

(3)Z̃λρµν =
1

6

(
gλνR̂

(Q)

[ρµ] + gρνR̂
(Q)

[λµ] − gλµR̂
(Q)

[ρν] − gρµR̂
(Q)

[λν] + gλρR̂
(Q)

[µν]

)
, (15)

(4)Z̃λρµν =
1

4
gλρR̃

σ
σµν , (16)

(5)Z̃λρµν =
1

8

(
gλν↗̂R

(Q)

(ρµ) + gρν↗̂R
(Q)

(λµ) − gλµ↗̂R
(Q)

(ρν) − gρµ↗̂R
(Q)

(λν)

)
. (17)

The tensor (2)Z̃λρµν satisfies (2)Z̃(λρµ)ν = 0 , (2)Z̃λ
λµν = 0 , (2)Z̃λ

µλν = 0.

Recall that if Qαβµ = 0, then R̃(λρ)µν = Z̃λρµν = 0.

Special case that we will be interested: Weyl-Cartan geometry which is when
Qαβµ = 1

4
gµνQλρ

ρ +↗Qλµν = 1
4
gµνQλρ

ρ (its traceless part is zero).
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(λµ) − gλµ↗̂R
(Q)

(ρν) − gρµ↗̂R
(Q)

(λν)

)
. (17)

The tensor (2)Z̃λρµν satisfies (2)Z̃(λρµ)ν = 0 , (2)Z̃λ
λµν = 0 , (2)Z̃λ

µλν = 0.

Recall that if Qαβµ = 0, then R̃(λρ)µν = Z̃λρµν = 0.

Special case that we will be interested: Weyl-Cartan geometry which is when
Qαβµ = 1

4
gµνQλρ

ρ +↗Qλµν = 1
4
gµνQλρ

ρ (its traceless part is zero).
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Algebraic classification in Weyl-Cartan geometry

As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qαβµ = 1

4gµνQλρ
ρ +↗Qλµν = Wαgβµ,

where Wµ = 1
4 Qµν

ν is called the Weyl vector.

In this particular geometry, only (4)Z̃λρµν = 1
4gλρR̃

σ
σµν = 4∇[νWµ] is different

from zero and all (i)W̃λρµν are also non-vanishing.

Then, we only have 7 building blocks:

Building blocks for Weyl-Cartan geometry{(1)

W̃λρµν , ↗̃R
(T )

λ[ρµν], ↗̃R(µν), R̃
(T )
[µν], R̃

λ
λµν , R̃, ∗R̃

}
.

#10 +#9 +#9 +#6 +#6 +#1 +#1 = #42 dof

The classification of
{
↗̃R(T )

λ[ρµν], ↗̃R(µν)

}
are equivalent since they carry the

same number of dof #9.

Further,
{
R̃

(T )
[µν], R̃

λ
λµν

}
are equivalent since they also carry the same

number of dof #6.
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Algebraic types of (1)W̃λρµν (#10 dof)

We distribute its 10 independent components in terms of the matrix
quantity

(1)W̃+
0̂a0̂b

= (1)W̃0̂a0̂b + i ∗(1) W̃0̂a0̂b . (18)

Eigenvalue problem:
(1)W̃+

0̂a0̂b
vb = λva . (19)

Quadratic and cubic invariants:

I = (1)W̃+
abcd

(1)W̃ abcd , J = (1)W̃+
ab

cd(1)W̃cd
ef (1)W̃ef

ab . (20)

Characteristic polynomial:

p(λ) = λ3 − I

16
λ− J

48
. (21)
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Algebraic types of (1)W̃λρµν (#10 dof)
Each special type satisfies a constraint associated with those null vectors {kµ, lµ,mµ, m̄µ} aligned with the tensor
(1)W̃λρµν or principal null directions

k[σ
(1)

W̃λ]ρµ[νkω]k
ρ
k
µ

= l[σ
(1)

W̃λ]ρµ[ν lω]l
ρ
l
µ

= 0 , (22)

m[σ
(1)

W̃λ]ρµ[νmω]m
ρ
m

µ
= m̄[σ

(1)
W̃λ]ρµ[νm̄ω]m̄

ρ
m̄

µ
= 0 . (23)

where

k
µ
lµ = −m

µ
m̄µ = 1 , (24)

k
µ
mµ = k

µ
m̄µ = l

µ
mµ = l

µ
m̄µ = 0 , (25)

k
µ
kµ = l

µ
lµ = m

µ
mµ = m̄

µ
m̄µ = 0 , (26)

and gµν = kµlµ + kν lµ + mµm̄ν + mνm̄µ.

Constraints with the PNDs:

l[σ
(1)

W̃λ]ρµ[ν lω]l
ρ
l
µ

= 0 ⇐⇒ Σ0 = 0 ,

(1)
W̃λρµ[ν lω]l

ρ
l
µ

= 0 ⇐⇒ Σ0 = Σ1 = 0 ,

(1)
W̃λρµ[νkω]k

ρ
k
µ

=
(1)

W̃λρµ[ν lω]l
ρ
l
µ

= 0 ⇐⇒ Σ0 = Σ1 = Σ3 = Σ4 = 0 ,

(1)
W̃λρµ[ν lω]l

µ
= 0 ⇐⇒ Σ0 = Σ1 = Σ2 = 0 ,

(1)
W̃λρµν l

µ
= 0 ⇐⇒ Σ0 = Σ1 = Σ2 = Σ3 = 0 . (27)

where

Σ0 =
(1)

W̃λρνµl
λ
m

ρ
l
µ
m

ν
,Σ1 =

(1)
W̃λρνµl

λ
k
ρ
l
µ
m

ν
,Σ2 =

(1)
W̃λρνµl

λ
m

ρ
m̄

µ
k
ν
,

Σ3 =
(1)

W̃λρνµl
λ
k
ρ
m̄

µ
k
ν
,Σ4 =

(1)
W̃λρνµk

λ
m̄

ρ
k
µ
m̄

ν
. (28)
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Algebraic types of (1)W̃λρµν (#10 dof)

Algebraic type Description Invariants Constraints with the PNDs
I 3 eigenvectors and 3 eigenvalues I3 ̸= 12J2 No further constraints
II 2 eigenvectors and 2 eigenvalues I3 = 12J2 (1)W̃λρµ[ν lω]l

ρlµ = 0

D 3 eigenvectors and 2 eigenvalues I3 = 12J2 (1)W̃λρµ[νkω]k
ρkµ = (1)W̃λρµ[ν lω]l

ρlµ = 0

III 1 eigenvectors and 1 eigenvalue I = J = 0 (1)W̃λρµ[ν lω]l
µ = 0

N 2 eigenvectors and 1 eigenvalue I = J = 0 (1)W̃λρµν l
µ = 0

O [−] I = J = 0 (1)W̃λρµν = 0

Table: Algebraic types for the tensor (1)W̃λρµν .
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Algebraic types of R̃(T )
[µν] and R̃λ

λµν (#9 dof each)

Components collected in the symmetric spinors:

ΞAB =
1

2
εĊḊτµ

AĊτ
ν
BḊR̃

(T )

[µν] , (29)

ΥAB =
1

2
εĊḊτµ

AĊτ
ν
BḊR̃λ

λµν . (30)

Eigenvalue problem:

ΞA
Bξ

B = λξA , (31)

ΥA
Bζ

B = σζA . (32)

Quadratic invariants:
X = ΞABΞ

AB , Y = ΥABΥ
AB . (33)

Set of eigenvalues:

λ = ±
√

− X

2
, σ = ±

√
− Y

2
. (34)
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Algebraic types of R̃(T )
[µν] and R̃λ

λµν (#9 dof each)

Expressions of R̃(T )
[µν] and R̃λ

λµν in terms of null basis:

R̃
(T )

[µν] = 2
[
Ω2k[µmν] + Ω̄2k[µm̄ν] − Ω0l[µm̄ν] − Ω̄0l[µmν]

−
(
Ω1 + Ω̄1

)
k[µlν] +

(
Ω1 − Ω̄1

)
m[µm̄ν]

]
, (35)

R̃λ
λµν = 2

[
Π2k[µmν] + Π̄2k[µm̄ν] −Π0l[µm̄ν] − Π̄0l[µmν]

−
(
Π1 + Π̄1

)
k[µlν] +

(
Π1 − Π̄1

)
m[µm̄ν]

]
, (36)

where

Ω0 = k[µmν]R̃
(T )
[µν]

, Ω1 =
1

2

(
k[µlν] −m[µm̄ν]

)
R̃

(T )
[µν]

, Ω2 = − l[µm̄ν]R̃
(T )
[µν]

,

Π0 = k[µmν]R̃λ
λµν , Π1 =

1

2

(
k[µlν] −m[µm̄ν]

)
R̃λ

λµν , Π2 = − l[µm̄ν]R̃λ
λµν .
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Algebraic types of R̃(T )
[µν] and R̃λ

λµν (#9 dof each)

PNDs: (
R̃

(T )
[µν]kλ − R̃

(T )
[µλ]kν

)
kµ =

(
R̃

(T )
[µν]lλ − R̃

(T )
[µλ]lν

)
lµ = 0 , (37)(

R̃σ
σµνkλ − R̃σ

σµλkν
)
kµ =

(
R̃σ

σµν lλ − R̃σ
σµλlν

)
lµ = 0 . (38)

Constraints with the PNDs:(
R̃

(T )
[µν]

lλ − R̃
(T )
[µλ]

lν
)
lµ = 0 ⇐⇒ Ω2 = 0 , (39)(

R̃σ
σµν lλ − R̃σ

σµλlν
)
lµ = 0 ⇐⇒ Π2 = 0 , (40)(

R̃
(T )
[µν]

kλ − R̃
(T )
[µλ]

kν
)
kµ = 0 ⇐⇒ Ω0 = 0 , (41)(

R̃σ
σµνkλ − R̃σ

σµλkν
)
kµ = 0 ⇐⇒ Π0 = 0 , (42)

R̃
(T )
[µν]

lµ = 0 ⇐⇒ Ω1 = Ω2 = 0 , (43)

R̃σ
σµν l

µ = 0 ⇐⇒ Π1 = Π2 = 0 . (44)
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Algebraic types of R̃(T )
[µν] and R̃λ

λµν (#9 dof each)

Algebraic type Segre characteristic Invariants Constraints with the PNDs
I [1 1] X ̸= 0 No further constraints
N [2] X = 0 R̃

(T )
[µν]

lµ = 0

O [−] X = 0 R̃
(T )
[µν]

= 0

Table: Algebraic types for the tensor R̃(T )
[µν].

Algebraic type Segre characteristic Invariants Constraints with the PNDs
I [1 1] Y ̸= 0 No further constraints
N [2] Y = 0 R̃λ

λµν l
µ = 0

O [−] Y = 0 R̃λ
λµν = 0

Table: Algebraic types for the tensor R̃λ
λµν .
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Algebraic types of ↗̃R(T )

λ[ρµν] and ↗̃R(µν) (#6 dof each) (see our paper)

Description Invariants
1 timelike eigenvector and 3 spacelike eigenvectors U∗

1 , V
∗
1 > 0

2 complex conjugate eigenvectors and 2 spacelike eigenvectors U∗
1 < 0

2 complex conjugate eigenvectors and 2 spacelike eigenvectors U∗
1 = 0 , V ∗

1 < 0 , W ∗
1 > 0

1 null eigenvector and 2 spacelike eigenvectors U∗
1 = 0 , V ∗

1 > 0 , W ∗
1 > 0

1 timelike eigenvector and 3 spacelike eigenvectors U∗
1 = 0 , V ∗

1 > 0 , W ∗
1 > 0

2 null eigenvectors and 2 spacelike eigenvectors U∗
1 = 0 , V ∗

1 > 0 , W ∗
1 > 0

1 null eigenvector and 1 spacelike eigenvector U∗
1 = W ∗

1 = 0 , V ∗
1 > 0

1 null eigenvector and 2 spacelike eigenvectors U∗
1 = W ∗

1 = 0 , V ∗
1 > 0

2 null eigenvectors and 2 spacelike eigenvectors U∗
1 = W ∗

1 = 0 , V ∗
1 > 0

1 timelike eigenvector and 3 spacelike eigenvectors U∗
1 = W ∗

1 = 0 , V ∗
1 > 0

1 null eigenvector and 2 spacelike eigenvectors U∗
1 = V ∗

1 = 0 , W ∗
1 > 0

2 null eigenvectors and 2 spacelike eigenvectors U∗
1 = V ∗

1 = 0 , W ∗
1 > 0

1 null eigenvector and 1 spacelike eigenvector U∗
1 = V ∗

1 = W ∗
1 = 0

1 null eigenvector and 2 spacelike eigenvectors U∗
1 = V ∗

1 = W ∗
1 = 0

2 null eigenvectors and 2 spacelike eigenvectors U∗
1 = V ∗

1 = W ∗
1 = 0

Table: Algebraic types for the tensor ↗̃R(T )

λ[ρµν].
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Application to stationary and axisymmetric space-times

MAG model with dynamical torsion in 4 dimensions1:

L =
1

64π

(
− 4R− 6d1R̃λ[ρµν]R̃

λ[ρµν] − 9d1R̃λ[ρµν]R̃
µ[λνρ] + 8 d1R̃[µν]R̃

[µν]
)
.

In terms of building blocks:

L =
1

64π

(
− 4R− 6d1↗̃R

(T )

λ[ρµν]↗̃R
(T )λ[ρµν] − 9d1↗̃R

(T )

λ[ρµν]↗̃R
(T )µ[λνρ]

+ 2d1R̃
(T )

[µν]R̃
(T )[µν] − d1

8
∗ R̃2

)
. (45)

We showed that the field strength tensors of torsion cannot be doubly
aligned with the principal null directions of the Riemannian Weyl
tensor in generic stationary and axisymmetric space-times2:

Wλρµ[νkω]k
ρkµ = Wλρµ[ν lω]l

ρlµ = 0 , (46)(
R̃

(T )

[µν]kλ − R̃
(T )

[µλ]kν
)
kµ =

(
R̃

(T )

[µν]lλ − R̃
(T )

[µλ]lν
)
lµ = 0 . (47)

1S. Bahamonde, J. Chevrier and J. G. Valcarcel, JCAP 02, 018 (2023).
2S. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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Conclusions

The algebraic classification of the curvature tensor has been largely
analysed in the framework of Riemannian geometry and, particularly,
in GR, while the corresponding studies and applications in MAG
remain unexplored.

We performed an irreducible decomposition and algebraic
classification of the curvature tensor are important analyses to
perform in MAG.
From a general irreducible decomposition depending on 11 building
blocks, we derive the algebraic classification of the curvature tensor in
Weyl-Cartan geometry3.
As an application, we demonstrate that for a MAG model based on
scalar-flat geometries the field strength tensors of torsion cannot be
doubly aligned with the principal null directions of the Riemannian
Weyl tensor in generic stationary and axisymmetric space-times.
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