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0 Short description of Algebraic classification in Riemannian
geometry

@ Irreducible decomposition of the curvature tensor in MAG
e Algebraic classification in Weyl-Cartan geometry
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@ Analyse algebraic properties for each mode: One can formulate an
eigenvalue problem whose resolution provides a set of geometric
multiplicities and the different types.
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How is the procedure for algebraic classification?

@ The complete classification of the relevant tensors in Riemannian
geometry is known.
@ Broadly speaking, the steps followed are:
@O Decompose the curvature tensor into its irreducible modes:

Riemmanian Curvature decomposition

1 1
Rxppv = Wippw + 2 (gAy.Rpu + gpu,R()\y, - g)\VRpp, - gpuR)\y) + 6 Rg)\[p,gulp )
#20(R>\puu) = #10(W)\pu1/) + #Q(Rpu) + #1(R) 0

@ Analyse algebraic properties for each mode: One can formulate an
eigenvalue problem whose resolution provides a set of geometric
multiplicities and the different types.

@ Result in Riemannian geometry: Weyl has 6 types (Petrov
classification); Ricci traceless has 15 types(Segre classification);

@ What happens in GR in vacuum? R, = R = 0 and then the
curvature is fully characterised by the Weyl tensor with their 6 types.
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Why is this classification useful?

o Einstein’s field equations are in general difficult to solve and
symmetries are needed for obtain exact solutions.
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Einstein’s field equations are in general difficult to solve and
symmetries are needed for obtain exact solutions.

It is mathematically important to classify the curvature to understand
possible extra symmetries of a system.

Reissner-Nordstrém and also Kerr-Newman have a very particular
characterisation which is known as Type D. Not only the Weyl tensor
is Type D in those cases but also the Faraday tensor fulfills a similar
property.

The most general Type D solution in Einstein-Maxwell is known as the
Plebanski-Demianski characterised by { M, a, o, N} (mass, angular
momentum, acceleration and Nut charge) and the electromagnetic
charges.

Goldberg-Sachs theorem: A vacuum solution of the Einstein’s field
equations admits a shear-free null geodesic congruence if and only if
the conformal part of the Riemann tensor is algebraically special.
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g,,, (10 comp.) as well as the coefficients I'*,,, (64
comp.) of an affine connection.
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g,,, (10 comp.) as well as the coefficients I'*,,, (64
comp.) of an affine connection.

@ The most general connection can be written as

Connection decomposition

Levi-Civita Torsuln part Nonmetacﬂy part

~N 7 ~N

PA A r}TA A JrEQ,\ _ g (1)
w= T 5T =T ) + 5@ w = Qu’),
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g,,, (10 comp.) as well as the coefficients I'*,,, (64
comp.) of an affine connection.

@ The most general connection can be written as

Connection decomposition

Levi-Civita

Torsion part Nonmetricity part

~N 7 ~N

P = Do 4irh, -, 10w —Quty, ()
w = D 5 T =170 + 5 Q7w =R

Curvature

R“VPG' = 8pfuuo' - adf“uup P fw"rp]h-:vruo - I?'u"rafj-rup

Torsion

THyp =TFHp —TH,,

Nonmetricity

pr = 6ugl'p = Ougup — fauugap —I%%ugvo
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Symmetries and identities of the curvature tensor

@ Skew symmetry of the last pair of indices of the curvature tensor:

Rpo(un) = 0. (@)
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Symmetries and identities of the curvature tensor

@ Skew symmetry of the last pair of indices of the curvature tensor:

Rpo(uv) = 0.
@ Bianchi identities:

= o A
R (uvp] = V[uT/\ o) T 11 T 1o
= DA w DA
Vie| B o) = T (ou B polv) »

~ = 1
R()‘p) pv = V[VQ[J,] 2 + 5 T° p,qu 22

()

@)
(4)

®)

@ Three independent second order tensors defined from the first contractions

of the curvature tensor:

R,u,l/ = R)\u)\u 3 R,uu = Ruk VA éA)\/,W = V[VQM])\)\ D

@ Scalar and pseudoscalar contractions:

R=R Aps ¥R = EAP”VRA,,,W .
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Symmetries and identities of the curvature tensor

@ Skew symmetry of the last pair of indices of the curvature tensor:

Rpo(uv) = 0.
@ Bianchi identities:

= o A
R (uvp] = V[uT/\ o) T 11 T 1o
= DA w DA
Vie| B o) = T (ou B polv) »

~ ~ 1
R()‘p) pv = V[VQ[J,] 2 + 5 T° p,qu 22

()

@)
(4)

®)

@ Three independent second order tensors defined from the first contractions

of the curvature tensor:
R,u,l/ = R)\u)\u 3 R,uu = RMX VA éA)\/,W = V[VQM])\)\ D

@ Scalar and pseudoscalar contractions:

R=R Aps ¥R = 5’\”“”R>\p,w .

@ In 4D, R,y has #96; T),, has #24; Q,,, has #40.
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Previous work and last talk at Yukawa Institute

@ In previous works, we found the first exact spherically symmetric solutions
with dynamical torsion and nonmetricityJcap o9 (2020), 057,JcAP 02 (2023), 018)

dr?
ds? = U (r)dt? — —— — % (d6? + sin® 0,d63) .
1(7) e (CCh 3)
with
dlng — 461%3 — 2f1/~c§h
2 b

2
\Ill(r):\Ilz(r)zl—Tm—i- -

having the three possible intrinsic charges: spin s, dilation x4 and shear
Ksh-
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Previous work and last talk at Yukawa Institute

@ In previous works, we found the first exact spherically symmetric solutions
with dynamical torsion and nonmetricityJcap o9 (2020), 057,JcAP 02 (2023), 018)

2
ds® = Wy (r) dt? — dr

2 2 2 2
T d0 —+ sin 6 d0 .
Wa(r) (465 + sin’ 6165)

with
dmg — 46153 — 2f1n§h

2
\Ill(r):\Ilz(r)zl—Tm—i- 1 ,

=
having the three possible intrinsic charges: spin s, dilation x4 and shear
Ksh -

@ We also managed to study axial symmetry and found a black hole solution
BUT only when |x2d; | << 1¢caP 01 (2022) no.01, 011,JCAP 04 (2022) no.04, 011).
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Previous work and last talk at Yukawa Institute

@ In previous works, we found the first exact spherically symmetric solutions
with dynamical torsion and nonmetricityJcap o9 (2020), 057,JcAP 02 (2023), 018)

dr?
ds® = Uy (r)dt? —
1(r) 20

— 72 (03 + sin® 6, d03) .

with
dmg — 46153 — 2f1n§h

2
Ui(r) = Wa(r) =1- =" + - :

=
having the three possible intrinsic charges: spin s, dilation x4 and shear
Ksh-

@ We also managed to study axial symmetry and found a black hole solution
BUT only when |/£§d1| < 1(JCAP 01 (2022) n0.01, 011;JCAP 04 (2022) n0.04, 011).

@ The problem in axial symmetry without a decoupling limit is extremely
complicated (24 dof for torsion+40 dof for nonmetricity).
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obtained in the decoupling limit.
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@ What can we do to obtain such axially symmetric solutions?
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Previous work and last talk at Yukawa Institute

@ In previous works, we found the first exact spherically symmetric solutions
with dynamical torsion and nonmetricityJcap o9 (2020), 057,JcAP 02 (2023), 018)

d: 2
ds? = Uy (r)de2 — -2

2 (102 4 o2 2
— do 01d03) .
Vo (r) r® (40 + sin® 01d05)

with

2m  dik2 —4e1r2 — 2f1K2
‘111(7'):\112(7"):1—7-1- 2 2d sh |

=
having the three possible intrinsic charges: spin s, dilation x4 and shear
Ksh-

@ We also managed to study axial symmetry and found a black hole solution
BUT only when |x2d; | << 1¢caP 01 (2022) no.01, 011,JCAP 04 (2022) no.04, 011).

@ The problem in axial symmetry without a decoupling limit is extremely
complicated (24 dof for torsion+40 dof for nonmetricity).

@ Possible new effects such as gravitational spin-orbit interaction could be
obtained in the decoupling limit.

@ What can we do to obtain such axially symmetric solutions? One possible
route is to impose additional symmetries for our field strengths tensors using an
algebraic classification
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Curvature decomposition in Metric-Affine geometry

o First, we need to find the building blocks of the general curvature
tensor (recall that in Riemannan geometry we had 3: Wos.., R, R).
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Curvature decomposition in Metric-Affine geometry

o First, we need to find the building blocks of the general curvature
tensor (recall that in Riemannan geometry we had 3: Wos.., R, R).
@ We can decompose:

General curvature

R/\p;w = R[)\P]IW + R(AP)W o= W)\PﬂV + Z/\p;w 0 (8)

@ We find that there are 11 building blocks:

Building block Number of independent components Limit in Riemannian geometry
(1)?”“,} 30 zero
OWspuw 10 Weyl tensor W ..

—T)
'Ff&c[?p)uu] 9 zero
RY(A [opv] 9 zero
Ry 9 Ricci traceless R, ,,
R‘( ) 9 zero
()
R 6 zero
[per]
RS 6 zero
[pr]
R™ v 6 zero
R 1 Ricci scalar R
*R 1 zero
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Curvature decomposition in Metric-Affine geometry

@ Using the 11 building blocks, one can express the curvature tensor into its irreducible
decomposition.
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Curvature decomposition in Metric-Affine geometry

@ Using the 11 building blocks, one can express the curvature tensor into its irreducible
decomposition.

@ Antisymmetric components
R[)\p]y.u = W)\p;_ul a )W)\p vt @ )Wkp;ul + @ )W)\puu + @ )Wkp;ul + ® )W)\puu + (6 )Wkp;ul

6
(I)W/\p;w = Wipur — Z (Z)W/\mw ’ ©)
i=2

) _
Wiour = 7 (R‘([PMV]+R'<>\PH] R‘E'[Mw be[*p'/]) (Rr( [Apv] R‘Y(/[)\PH]) (10)

o 1 -
O Wy = — ﬁ “Rexpuns OWapuw = ¢ Raauon, (11)
~ 1 - o
OWrpur = 2 [onn (2R + BG)) + 900 (2R0) + AR))
= oxe (2R + R())) = 9o (2R0w) + AR) | (12

5) 1% 1 T T 5o
W = 2 o (2R + B2 + 00 (28D, + B) + A% s
4

2T

- g’\”( lowl T REpQu)]) ~ Irn (21%&3] + RE;QV)]) - Raﬂp[ugv]k} :
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Curvature decomposition in Metric-Affine geometry

@ Using the 11 building blocks, one can express the curvature tensor into its irreducible
decomposition.

@ Antisymmetric components
R[)\p]yu = W)\p;_ul a )W)\p vt @ )Wkpuu + @ )W)\puu + @ )Wkp;ul + ® )W)\puu + (© )Wkp;ul

6
(I)W/\p;w = WAMW - Z (Z)W/\mw ’ ©)
i=2
) _
Wipur = (R‘( Alppv] + R'( [Apu] R‘E'[Mw be[*w]) (Rr( [Apv] R‘fj[)\PPr]) (10)
- - 1 -
O Wppur = = ﬁ “Rexpuns OWapuw = ¢ Raauon, (1)

) + 900 (2B + RS

(pv)

= o (2R + BG)) = 90 (2R + BR) | (12)

~ 1
(4)W>\p,“, == [g)\” (QR'(W) + R‘(

5) 1% 1 P Q i Q =o
OWrpur = 3 [ana (2R + RED) + 900 (2RI + BT + B oriu0u

T ~(T =
= o (2R + Bigh) = 00w (CRED) + REN) = R aptuonn]

@ Note that the generalised Wey! tensor (1)VT/A,,W has the same symmetries as the Riemannian
Weyl tensor MWWy, = — DWW, = = OWap, OWy () = OWA 0, = 0.
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Curvature decomposition in Metric-Affine geometry

@ Symmetric components ~ 5 ~ ~
R()\p)/.w = Z)\p;u/ = (I)Z)\puu = (Z)Z/\puu = (3)Z)\p;4u = (4)Z)\puu a4 ® Z/\puu:

5
(1)Z>\puu = Z)\p;w - Z (Z)kam/ 3 (13)
1=2

=2 1/ Q) (@)

@ Znpww = § (RA[WV] + Rpwu]) : 4)
N 1 R R R . A

© Zrouw = 5 (9 R + 90 R — 0B — 90 R + o0 B)) . (15)
- 1 -

(4)Z>\p;w = ZQMR ouv (16)

(&) (&) (o)) )

= 1 Q)
(5)Zx\p;w =3 (g/\uﬁ‘(pu) + QPVR(AH) - gAH‘R(pu) - gPHR()\u) (17)
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Curvature decomposition in Metric-Affine geometry

@ Symmetric components ~ 5 ~ ~
R()\p)/.w = Z)\p;u/ = (I)Z)\puu = (2)Z/\puu = (3)Z)\p;4u = (4)Z)\puu a4 ® Z)\p/_u/:

5
(1)Z>\puu = Z)\p;w - Z (Z)kaw/ 3 (13)
1=2

=2 1/ Q) (@)

@ Znpww = § (RA[WV] + Rpwu]) ; (14)
N 1 R R R . A

© Zrouw = 5 (9 R + 90 R — 0B — 90 R + o0 B)) . (15)
- 1 -

(4)Z>\p;w = ZQMR ouv (16)

(&) (o)) )

= 1 Q) Q)
(5)Zx\p;w ) (g/\uﬁ‘(pu) + gPVR(AH) - gAH‘R(pU) - gPHR()\V) (17)

@ The tensor ® Z, ., satisfies @ Z (5 ), =0, 2%, =0, 2%\, = 0.
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Curvature decomposition in Metric-Affine geometry

@ Symmetric components ~ 5 ~ ~
R()\p)/.w = Z)\p;u/ = (I)Z)\puu = (2)Z/\puu = (3)Z)\p;4u = (4)Z)\puu a4 ® Z)\p/_u/:

5
(1)Z>\puu = Z)\p;w - Z (Z)kaw/ 3 (13)
1=2

=2 1/ Q) (@)

@ Znpww = § (RA[WV] + Rpwu]) ; (14)
N 1 R R R . A

© Zrouw = 5 (9 R + 90 R — 0B — 90 R + o0 B)) . (15)
- 1 -

(4)Z>\p;w = ZQMR ouv (16)

(&) (o)) )

= 1 Q) Q)
(5)Zx\p;w ) (g/\uﬁ‘(pu) + gPVR(AH) - gAH‘R(pU) - gPHR()\V) (17)

@ The tensor ® Z, ., satisfies @ Z (5 ), =0, 2%, =0, 2%\, = 0.

@ Recall that if Qupy. = 0, then Roxp)uw = Zapuw = 0.
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Curvature decomposition in Metric-Affine geometry

o Symmetrlc Components 5 5 _ 5
R()\p)/.w - Z)\p;u/ =@ )Z)\ v+ (Z)Z/\puu = ® Z)\puu = (4)Z/\p;u/ aF ® Z)\p;_w:

5
1) % > 1) 77
( )Z)\puu = Z)\p;u/ - Z( )Z)\pw/ 3
1=2
2) 5 (Q) (Q)
( )Z)\p,uv = (,Rl Apuv] + /R( [)\;u/])
~ 1 .
(S)ZMW - 6 (gquEp; + gP”R[A/«L gA”ngf g””REAQV] + g>“’R<;w)]) ’

. 1 2
(4)Z>\p;w = ZQAPR ouv
5) 5 (@) (@) (Q)
: )Z/\p;w = (gAuR(pH) +gPVR(A;4) gA#R(pu) quE(xu))
@ The tensor ® Z, ., satisfies @ Z (5 ), =0, 2%, =0, 2%\, = 0.
@ Recall that if Qap, = 0, then Rixpyuw = Zapuw = O.

@ Special case that we will be interested: Weyl-Cartan geometry which is when
Qapu = 29wQxp " + D = 19w Qx, ° (its traceless part is zero).
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Algebraic classification in Weyl-Cartan geometry

@ As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qo = 39,0 Qxp ? + Dy = Wadspus
where W, = 1 Q,,,” is called the Weyl vector.
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Algebraic classification in Weyl-Cartan geometry

@ As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qo = 39,0 Qxp ? + Dy = Wadspus
where W, = 1 Q,,,” is called the Weyl vector.

@ In this particular geometry, only V) Z, ..., = L9\, R% 5, = 4V, W, is different
from zero and all (1¥y,,,,, are also non-vanishing.
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@ As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qas, = 19, Qx,° + D = Wadppus
where W, = 1 Q,,,” is called the Weyl vector.

@ In this particular geometry, only V) Z, ..., = L9\, R% 5, = 4V, W, is different
from zero and all (1¥y,,,,, are also non-vanishing.
@ Then, we only have 7 building blocks:
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Algebraic classification in Weyl-Cartan geometry

@ As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qag. = 19, Qxp” + @ = Wadpp,
where W, = 1 Q,,,” is called the Weyl vector.

@ In this particular geometry, only V) Z, ..., = L9\, R% 5, = 4V, W, is different
from zero and all (1¥y,,,,, are also non-vanishing.

@ Then, we only have 7 building blocks:

Building blocks for Weyl-Cartan geometry

1) - (T) ~
{ W)\p,ul/’R)\[puu] /R‘(,u,u)v [[LV]’R )\uV’R *R}

#10 + #9 + #9 + #6 + #6 + #1 + #1 = #42 dof
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@ As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qag. = 19, Qxp” + @ = Wadpp,
where W, = 1 Q,,,” is called the Weyl vector.

@ In this particular geometry, only V) Z, ..., = L9\, R% 5, = 4V, W, is different
from zero and all (1¥y,,,,, are also non-vanishing.

@ Then, we only have 7 building blocks:

Building blocks for Weyl-Cartan geometry

1) - (T) ~
{ W)\puu’R)\[puu] /R‘(,u,u)’ [[LV]’R )\;LIMR *R}

#10 + #9 + #9 + #6 + #6 + #1 + #1 = #42 dof

@ The classification of { R‘(AT[;W], R(W)} are equivalent since they carry the
same number of dof #9.
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Algebraic classification in Weyl-Cartan geometry

@ As said before, Weyl-Cartan geometries are the ones where there is
curvature, torsion and nonmetricity but Qasu = 39w Qxp” + @ = Walsps
where W, = 1 Q,,,” is called the Weyl vector.

@ In this particular geometry, only (4 Z,\,W = ZgApR”,,W = 4V, W, is different
from zero and all VW, ,,,, are also non-vanishing.

@ Then, we only have 7 building blocks:

Building blocks for Weyl-Cartan geometry

M () 5
{ Wixppars R joga)s Rurys Ry B 3 R, *R}
#10 + #9 + #9 + #6 + #6 + #1 + #1 = #42 dof

@ The classification of { R‘(AT[;W], R(W)} are equivalent since they carry the
same number of dof #9.

@ Further, {REZV)],RA A;w} are equivalent since they also carry the same
number of dof #6.
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Algebraic types of WW, (#10 dof)

@ We distribute its 10 independent components in terms of the matrix
quantity . . .
OW oo = O Waago + 0 Wiy (18)
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Algebraic types of WA,W (#10 dof)

@ We distribute its 10 independent components in terms of the matrix
quantity . . .
OW oo = O Waago + 0 Wiy (18)

@ Eigenvalue problem: .
(1)W5;Obvb = A\vg - (19)
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Algebraic types of WWV (#10 dof)

@ We distribute its 10 independent components in terms of the matrix
quantity . . .
OW oo = O Waago + 0 Wiy (18)

@ Eigenvalue problem: .
(1)W5;6bvb = A\vg - (19)

@ Quadratic and cubic invariants:

7= (l)W;l—)Cd(l)Wabcd, J= (1)W£Cd(l)chef(l)Wefab ) (20)
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Algebraic types of WW,, (#10 dof)

@ We distribute its 10 independent components in terms of the matrix
quantity . . .
OW oo = O Waago + 0 Wiy (18)

@ Eigenvalue problem: .
(1)W5;6bvb = A\vg - (19)

@ Quadratic and cubic invariants:
J = (I)W;;)Cd(l)Wabcd, J= (1)Wl;|l—)cd(l)wcdef(l)wefab ) (20)

@ Characteristic polynomial:

pN) =2 — - . (21)
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Algebraic types of (1 WW, (#10 dof)

@ Each special type satisfies a constraint associated with those null vectors {k ., 1,,, m ., 7, } aligned with the tensor
(€3] WAP’“, or principal null directions

ko O Wajout kot k6 = 1g QWb 191 = 0, 22)
m[a(l)WA]p v w]mpm“ =My @ )WA]p v w]m”m“ =0, (23)
where
k4, = —mfm, =1, (24)
ktm, = kMfmy, =1Hm, =1"m, =0, (25)
Kfk, = 1M, =mPm, =mlm, =0, (26)

and gh” = kR + KYIR + mMmY + mYmhi
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Algebraic types of VTV, ., (#10 dof)

@ Each special type satisfies a constraint associated with those null vectors {kp, 1, my, my} aligned with the tensor
(€3] WAP’“, or principal null directions

ko O Wajout kot k6 = 1g QWb 191 = 0, 22)
m[g(l)WMp v w]mpm“ =My @ )Wx]p v w]m”m“ =0, (23)
where
k4, = —mfm, =1, (24)
ktm, = kMfmy, =1Hm, =1"m, =0, (25)
Kfk, = 1M, =mPm, =mlm, =0, (26)

and g*¥ = KHIE 4+ BV IR + mPmY + mY mh
@ Constraints with the PNDs:

Bles
Ue D Wy la)i?* =0 <= Sg =0,

OW, il lP* =0 <= Sp =5

Il
o

Bt .
OW, ko) Bk = DWy 1) P1H =0 <= Sg=31=S3=5,=0,
OW, ol =0 <= So=%1 =%, =0,
W Wyl =0 — To=3; =5 =53 = 0. @7
where
S0 = DWWy, mPirm? |51 = DWWy, P 6P m” 25 = Dy, 10 mPmb Y

25 = DWWy, kPml e 2y = DV, kP mPEEmY (28)
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Algebraic types of

WApm/ (#10 dof)

Algebraic type Description Invariants Constraints with the PNDs
I 3 eigenvectors and 3 eigenvalues | I° # 12.J2 No further constraints
ir 2 eigenvectors and 2 eigenvalues | I° = 12.J2 OWy b =0
D 3 eigenvectors and 2 eigenvalues | I° = 1272 | OW, i,k k?k" = DWWy 0 1 PF =0
IIr 1 eigenvectors and 1 eigenvalue | I =J =0 OWypuplugt” =0
N 2 eigenvectors and 1 eigenvalue | I =J =0 DWWyl =0
o) [7] I=J=0 (1)W>\pm/ =0

Table: Algebraic types for the tensor (DT, .
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Algebraic types of R[(ZV)] and R, (#9 dof each)

@ Components collected in the symmetric spinors:

— 1 ¢r v D

ZAB = §E:CDT”‘A0T BDREZB] 5 (29)
1 er P

Tap = e 01 4o pp R N - (30)
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Algebraic types of R[(ZV)] and R*,,, (#9 dof each)

@ Components collected in the symmetric spinors:

@ Eigenvalue problem:

Sebastian Bahamonde (*)
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Algebraic types of R[(ZV)] and R*,,, (#9 dof each)

@ Components collected in the symmetric spinors:

@ Eigenvalue problem:

@ Quadratic invariants:

Sebastian Bahamonde (*)

BEam =

YTag =

1 ¢p v BT
7¢ ™ aeT oL
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Algebraic types of Rﬁ] and R*,,, (#9 dof each)

@ Components collected in the symmetric spinors:

@ Eigenvalue problem:

@ Quadratic invariants:

@ Set of eigenvalues:

Sebastian Bahamonde (*)

= = D _p v p(T)

Bap =3¢ T 4¢T BDR[W],
1 en v BA

TAB = 58 T#AC'T BDR Apv -

1 ¢p

:ABéB _ )\gA’

TABCB _ UCA

—AB : Y = TABTAB
X Y

— 5 5 oc== — 5 o
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Algebraic types of Rﬁ] and R*,,, (#9 dof each)

@ Expressions of R[(fu)] and R*),, in terms of null basis:

R<T)] = 2[sz[umy] + ng[”m,,] — Qol[pjﬁlu] — Qol[umy]

22
= (@1 + Q1) Kby + (0 = Q1) mpiny ], (35)
R = 2[Makyumy) + Makyumy) — Mol — olf,my)
— (M + 1) kply) + (T — ) mpuimy ] (36)
where
Qo = klim) ngu)] = %(k[ullf] _ m[umV]) Rfﬂ] Q= — il REB] 7
Mo = KFmY R s, T0 = %(k[ul'/] — ) R T = - R,
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Algebraic types of R[(ZV)] and R, (#9 dof each)

o PNDs:
»(T) »(T) _ (p@D (1) _
(B = Bk ) = (Bl = Byl)* =0, (37)
(R opvkr — R ppnk ) k* = (R gpuly — R 5pal) 1M = 0. (38)
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Algebraic types of Rﬁ] and R*,,, (#9 dof each)

o PNDs:
(T) p(T) _ (p@D p(T) _

(Rpunkx = Bk )k = (Bp b = By )l =0, (37)
(R"w,,k,\ — R"GMku)k“ = (R"U,“,l,\ — R",m,\l,,)l“ =0. (38)

@ Constraints with the PNDs:
(Rfiu]l/\ - Rfﬂ]l,,)l“ =0 = =0, (39)
(R opvly — R7gpal) I =0 < I =0, (40)
(REB]I@A - Rfﬂ]ky)kﬂ =0 < Q0 =0, 1)
(R% opvks — R% gpnku)kH =0 < I =0, (42)
RO =0 < Q1 =02 =0, (43)
ROl =0 <= II) =1, = (44)
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Algebraic types of Rﬁ] and R*,,, (#9 dof each)

Algebraic type | Segre characteristic | Invariants | Constraints with the PNDs
I [11] X #0 No further constraints
N 2] X=0 R =0
_ p(T) _
o (-] X=0 Ry, =0

Table: Algebraic types for the tensor R

(T)
[pv]”

Algebraic type | Segre characteristic | Invariants | Constraints with the PNDs
I [11] Y #0 No further constraints
N 2] Y =0 RA it =0
o [_] Y=0 R)‘A;U/ =0

Table: Algebraic types for the tensor Rﬁ,ﬂ,.
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Algebraic types of R‘g) ) and R‘(W) (#6 dof each) (see our papen

puv

Description Invariants
1 timelike eigenvector and 3 spacelike eigenvectors U, Vir >0
2 complex conjugate eigenvectors and 2 spacelike eigenvectors Uy <0

2 complex conjugate eigenvectors and 2 spacelike eigenvectors

Ur =0, Vf <0, W; >0

1 null eigenvector and 2 spacelike eigenvectors

Uy =0, Vy >0, Wy >0

1 timelike eigenvector and 3 spacelike eigenvectors

Ur=0, Vf >0, Wi >0

2 null eigenvectors and 2 spacelike eigenvectors

Uf =0, Vi >0, Wy >0

1 null eigenvector and 1 spacelike eigenvector

Ur =W; =0, V>0

1 null eigenvector and 2 spacelike eigenvectors

U =W; =0, V; >0

2 null eigenvectors and 2 spacelike eigenvectors

U =W; =0, V; >0

1 timelike eigenvector and 3 spacelike eigenvectors

Ur=W; =0, V; >0

1 null eigenvector and 2 spacelike eigenvectors

U =V;=0, W; >0

2 null eigenvectors and 2 spacelike eigenvectors

Ur=Vy=0, W; >0

1 null eigenvector and 1 spacelike eigenvector

U =Vy=W; =0

1 null eigenvector and 2 spacelike eigenvectors

Uf =V =Wf =0

2 null eigenvectors and 2 spacelike eigenvectors

U=V =W;=0

Table: Algebraic types for the tensor R‘(;[PZW].
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Application to stationary and axisymmetric space-times

@ MAG model with dynamical torsion in 4 dimensions’:

L= @ (— 4R — 6d1R>\[puu]R)‘[p‘uV] — 9d1R)\[pu,j] RH[AVP] +8 d1R[MU]R[‘W]) .

's. Bahamonde, J. Chevrier and J. G. Valcarcel, JCAP 02, 018 (2023).
2. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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Application to stationary and axisymmetric space-times

@ MAG model with dynamical torsion in 4 dimensions’:

£= 64:ll7r( & Glek[PW]RMpW] = 9d1RA[puu]R”[’\”"] + 8d1R ]R[‘“’])

@ In terms of building blocks:

1 (T) =T Afppr T D upw
L= ( 4R — 6y RS [ BNOm _gay BT R D)
A(T) BTl _ G 52
+2d4:R{T) R R ). (45)

's. Bahamonde, J. Chevrier and J. G. Valcarcel, JCAP 02, 018 (2023).
2. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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Application to stationary and axisymmetric space-times

@ MAG model with dynamical torsion in 4 dimensions’:

£= 6i7r< & Glek[PW]RMPW] = gle)\[Puu]Ru[AVp] + 8d1R ]R[‘“’])

@ In terms of building blocks:

1 (T) (T N[ppiv (T) )y
£ = g (4R = 6 R N — 0y () RO

+ 24, BT RO — % « ). (45)

@ We showed that the field strength tensors of torsion cannot be doubly
aligned with the principal null directions of the Riemannian Weyl

tensor in generic stationary and axisymmetric space-times?:
Wpulp k) kK" = Wl l?1* =0, (46)
(R kx — R[Tg]k B = (RCD)in — R L)I* =0, (47)

[nv] [nv] 23 g

's. Bahamonde, J. Chevrier and J. G. Valcarcel, JCAP 02, 018 (2023).
2. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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Conclusions

o The algebraic classification of the curvature tensor has been largely
analysed in the framework of Riemannian geometry and, particularly,
in GR, while the corresponding studies and applications in MAG
remain unexplored.

3. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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analysed in the framework of Riemannian geometry and, particularly,
in GR, while the corresponding studies and applications in MAG
remain unexplored.

@ We performed an irreducible decomposition and algebraic
classification of the curvature tensor are important analyses to
perform in MAG.

@ From a general irreducible decomposition depending on 11 building
blocks, we derive the algebraic classification of the curvature tensor in
Weyl-Cartan geometry3.

3. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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@ The algebraic classification of the curvature tensor has been largely
analysed in the framework of Riemannian geometry and, particularly,
in GR, while the corresponding studies and applications in MAG
remain unexplored.

@ We performed an irreducible decomposition and algebraic
classification of the curvature tensor are important analyses to
perform in MAG.

@ From a general irreducible decomposition depending on 11 building
blocks, we derive the algebraic classification of the curvature tensor in
Weyl-Cartan geometry?.

@ As an application, we demonstrate that for a MAG model based on
scalar-flat geometries the field strength tensors of torsion cannot be
doubly aligned with the principal null directions of the Riemannian
Weyl tensor in generic stationary and axisymmetric space-times.

3S. Bahamonde and J. G. Valcarcel, arXiv: 2305.05501 [gr-qc].
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