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Basic mathematical ingredients
Teleparallel equivalent of General Relativity

Tetrads and spin connection

Notation: µ, ν, α, ..: space-time; a, b, c, ..: tangent space.
Γ̊: Levi-Civita, Γ: Teleparallel connection.

Tetrads (or vierbein) eaµ are linear basis on the spacetime
manifold, and at each point of the spacetime, tetrads gives
us basis for vectors on the tangent space.
Em

µ is the inverse of the tetrad.
Tetrads satisfy the orthogonality condition; Emµenµ = δnm
and Emνemµ = δνµ and the metric and its inverse can be
reconstructed via

Metric and tetrads

gµν = ηabe
a
µe
b
ν , gµν = ηabEa

µEb
ν

where ηab is the Minkowski metric.
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Basic mathematical ingredients
Teleparallel equivalent of General Relativity

Connection in Teleparallel gravity

GR assumes zero torsion and non-zero curvature
(Levi-Civita connection) whereas Teleparallel gravity (TG)
assumes zero curvature and non-zero torsion. Both
assumes non-metricity to be zero, meaning ∇̂αgµν = 0.

TG has a different connection known as “Weitzenböck
connection”, defined as

Weitzenböck connection

Γρµν = Ea
ρDµe

a
ν = Ea

ρ(∂µe
a
ν + wabµe

b
ν) .

In TG, it is always possible to find a frame such that
ωabµ = 0, but this is a gauge choice, so only some tetrads
are compatible with this.
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Torsion tensor

The field strength in TG is the torsion tensor that is defined
as the antisymmetric part of the Weitzenböck connection

Torsion tensor

T ρµν = Γρνµ−Γρµν = EA
ρ
(
eAν,µ−eAµ,ν+ωABµe

B
ν−ωABνeBµ

)
.

The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.
The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection ωabµ vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.
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Torsion tensor

T ρµν = Γρνµ−Γρµν = EA
ρ
(
eAν,µ−eAµ,ν+ωABµe

B
ν−ωABνeBµ

)
.

The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.
The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection ωabµ vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



6/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

Basic mathematical ingredients
Teleparallel equivalent of General Relativity

Torsion tensor

The field strength in TG is the torsion tensor that is defined
as the antisymmetric part of the Weitzenböck connection

Torsion tensor

T ρµν = Γρνµ−Γρµν = EA
ρ
(
eAν,µ−eAµ,ν+ωABµe

B
ν−ωABνeBµ

)
.

The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.

The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection ωabµ vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



6/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

Basic mathematical ingredients
Teleparallel equivalent of General Relativity

Torsion tensor

The field strength in TG is the torsion tensor that is defined
as the antisymmetric part of the Weitzenböck connection

Torsion tensor

T ρµν = Γρνµ−Γρµν = EA
ρ
(
eAν,µ−eAµ,ν+ωABµe

B
ν−ωABνeBµ

)
.

The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.
The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection ωabµ vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



7/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

Basic mathematical ingredients
Teleparallel equivalent of General Relativity

Local Lorentz transformations

If one performs a local Lorentz transformation
e′aµ = Λabe

b
µ, the metric gµν = g′µν is invariant. A

consequence of this is that the metric has 10 d.o.f. and the
tetrads 10+6(the extra comes from Λab). Different tetrads
can give the same metric.

By Doing the same for the spin connection
ωabµ 7→ ω′abµ = Λac(Λ

−1)db ω
c
dµ + Λac ∂µ(Λ−1)cb , one

concludes that the tetrad and spin connection which model
a given metric-affine geometry are uniquely determined
only of to a local Lorentz transformation.
The torsion tensor is covariant under local Lorentz
transformation.
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Flat condition in Teleparallel gravity

The Weitzenböck connection Γρνµ is related to the
Levi-Civita connection

◦
Γρνµ via

Relationship between affine and spin connections

Γρνµ =
◦
Γρνµ +Kρ

µν , ωabµ =
◦
ωabµ +Ka

bµ

Here Kρ
µν = 1

2(Tµ
ρ
ν + Tν

ρ
µ − T ρµν) is the contortion

tensor.
In this connection, it is easy to verify that the spacetime is
globally flat:

Curvature in Teleparallel gravity

Rabµν(ωabµ) = ∂µω
a
bν − ∂νωabµ + ωacµω

c
bν − ωacνωcbµ ≡ 0 .
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Ricci scalar and torsion scalar

Both GR and TEGR assume ∇µgαβ = 0 (metric
compatibility).

Thus, one can split the curvature as follows

Ricci tensor and contortion
Rλ

µσν = R̊λ
µσν + ∇̊σKν

λ
µ − ∇̊νKσ

λ
µ +Kσ

λ
ρKν

ρ
µ −Kσ

ρ
µKν

λ
ρ ≡ 0 .

Here, R̊λ µσν is the curvature tensor computed with the
Levi-Civita connection. Reminder: overcircles mean that
those quantities are computed with the Levi-Civita
connection.
Be careful here! The general curvature Rλ µσν ≡ 0, not
R̊λ µσν 6= 0
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Teleparallel equivalent of General Relativity

Ricci scalar and torsion scalar

By splitting the curvature tensor and contracting it with the
metric gµνRλ µλν ≡ R (Ricci scalar-general one), one gets

Ricci scalar Levi-Civita and torsion scalar

R = R̊+ T −B = 0→ R̊ = −T +B .

Here, the we have defined (with e = det(eaµ) =
√−g)

Torsion scalar and boundary term

T =
1

4
T ρ

µνTρ
µν +

1

2
T ρ

µνT
νµ

ρ − Tλ
λµTν

νµ , B =
2

e
∂µ(eTλ

λ
µ) .

The Ricci scalar computed from the Levi-Civita connection
R̊ differs from the scalar torsion T by a boundary term B.
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Ricci scalar Levi-Civita and torsion scalar

R = R̊+ T −B = 0→ R̊ = −T +B .

Here, the we have defined (with e = det(eaµ) =
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The Ricci scalar computed from the Levi-Civita connection
R̊ differs from the scalar torsion T by a boundary term B.
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Teleparallel equivalent of General Relativity action

The TEGR action is formulated based on the torsion scalar
T , namely

Teleparallel equivalent of General Relativity action

STEGR =

∫ [
− 1

2κ2
T + Lm

]
e d4x .

where κ2 = 8πG and Lm is any matter Lagrangian.

T and the scalar curvature R̊ differs by a boundary term B
as R̊ = −T +B so:

Equivalence between field equations
The field equations arising from STEGR are equivalent to the
Einstein field equations.
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Teleparallel equivalent of General Relativity

Two different ways of understanding gravity

Coupling to matter
In TG, no direct matter coupling to the teleparallel connection is
introduced, in order to preserve the weak equivalence principle =⇒
matter fields retain their universal coupling to the metric and
possibly its Levi-Civita connection (in the case of spinor fields).

Equivalence on their field equations
TEGR has the same equations as GR, so CLASSICALLY it is
impossible to make any observation to distinguish between
them. All classical experiments already done, that have
confirmed GR, also can be understood as a confirmation of
TEGR.
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Actually not only two, but three!

There is another geometrical theory of gravity having the
same Einstein field equations as its field equations which
is based in non-metricity.

Symmetric Teleparallel gravity: torsion and curvature are
zero and non-metricity Qαµν = ∇αgµν 6= 0 is non-vanishing.
By imposing that torsion is zero and by imposing that the
Ricci scalar vanishes (total) we arrive at

Ricci scalar and non-metricity
�
R =

◦
R+

�
Q+Dα(

�
Qα −

�̃
Qα) = 0→

◦
R = −

�
Q+Dα(

�̃
Qα −

�
Qα) ,

where
�
Q = 1

4

�
QαβγQ

αβγ − 1
2

�
QαβγQ

βαγ − 1
4

�
Qα

�
Qα + 1

2

�
Qα

�̃
Qα,

�
Qα =

�
Qαλ

λ and
�̃
Qα =

�
Qλλα.
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General features
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Modified teleparallel theories

What happens if we modify TEGR?
If we modify the TEGR action, a priori there is no equivalence
between modified theories from GR and modified Teleparallel
theories.

Are Teleparallel theories Lorentz invariant?
There is a lot of misconceptions in the literature since TEGR
and their first modifications were proposed in the pure-tetrad
formalism, which assumes that ωabµ = 0 globally. By assuming
this choice, TEGR is pseudo local Lorentz invariant (invariant
up to a boundary term) and in modified TG, there is a breaking
of the local Lorentz invariant.
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General features
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Important properties of Teleparallel theories

Gauge nature: Teleparallel gravity can be written as the
gauge theory of translations with the torsion tensor being
the field strength of the theory.

The division between inertial and gravitational effects:
In GR, gravity and inertia cannot be separated, but in TG,
there are some arguments in favour that it is possible to
separate them by putting all the inertial effects in ωabµ and
gravity in the tetrads eaµ.
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Important properties of Teleparallel theories

Teleparallel theories have the tetrads and spin connection
as the fundamental variables, so that, one most commonly
assumes an action which is of the form

S = Sg[e, ω] + Sm[e, χ] ,

where the gravitational part Sg of the action depends on
the tetrad eAµ and the spin connection ωABµ, while the
matter part depends on the tetrad eAµ and arbitrary matter
fields χI , but not on the spin connection.

Particles (bosonic or femionic) follow the standard
geodesic equation.
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Important properties of Teleparallel theories

Variations of any action should be taken with respect to
both variables (with the emphasis that the spin connection
is non-arbitrary but always flat).

Since ωABµ is a pure-gauge quantity, it can be shown that
the the antisymmetric part of the field equations arising
from variations w/r to the tetrads eAµ coincides with the
variations of the action w/r to ωABµ.
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Important properties of Teleparallel theories

Field equations are fully covariant (Lorentz and diffeo), and
after finding them, it is possible to choose a gauge, known
as the Weitzenböck gauge which is a special frame where
ωABµ = 0.

This gauge choice can be only taken after deriving the field
equations and if one does this, only some tetrads will be
compatible with this choice.
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as the Weitzenböck gauge which is a special frame where
ωABµ = 0.
This gauge choice can be only taken after deriving the field
equations and if one does this, only some tetrads will be
compatible with this choice.

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



21/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

General features
Some important theories

New General Relativity (NGR)

The torsion tensor can be decomposed in its irreducible parts
as

aµ =
1

6
εµνσρT

νσρ , vµ = T σσµ ,

tσµν =
1

2
(Tσµν + Tµσν) +

1

6
(gνσvµ + gνµvσ)− 1

3
gσµvν ,

where εµνσρ is the totally anti-symmetric Levi-Civita symbol.
From these we build the scalars

Tax = aµa
µ , Tvec = vµv

µ , Tten = tσµνt
σµν ,

and the torsion scalar is a linear combination

T =
3

2
Tax +

2

3
Tten −

2

3
Tvec .
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New General Relativity (NGR)

The first Teleparallel modification was introduced in 19791,
and it is labelled as New General Relativity. Its action
reads

New General Relativity action

SNGR =
1

2κ2

∫
d4x
[
c1Tvec + c2Tax + c3Tten

]
e .

If c1 = −2
3 , c2 = 3

2 , c3 = 2
3 , the above action is equivalent to

the TEGR one.

1K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979), 3524-3553
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New General Relativity (NGR)

In this theory, torsion would represent additional degrees of
freedom relative to the curvature, which would thus
produce deviations in relation to general relativity

This theory contains parity-preserving quadratic form of
the torsion with three free parameters.
Perturbations around Minkowski shows that the unique
stable Minkowski background that includes gravity is the
TEGR case2.

2J. Beltrán Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
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In this theory, torsion would represent additional degrees of
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2J. Beltrán Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



24/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

General features
Some important theories

f(T ) gravity

Inspired from f(R̊) gravity, Ferraro and Fiorini3 introduced
another teleparallel theory by generalising T → f(T ) in the
action:

f(T ) gravity action

Sf(T ) =

∫
f(T )e d4x .

The torsion scalar T depends on the first derivatives of the
tetrads→ Second order theory:

Not equivalence between f(R̊) and f(T )

Field equations of f(T ) 6= Field equations of f(R̊)

3R. Ferraro and F. Fiorini, Phys. Rev. D 75 (2007), 084031.
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f(T ) gravity

Lots of misunderstandings in the literature since this theory
was firstly formulated in the non-Lorentz covariance
formulation.

Now, we know that the spin connection must be included in
the definition of torsion to keep the theory local Lorentz
invariance.
The Hamiltonian analysis is extremely difficult. Due to this,
different papers have claimed different d.o.f.
The last paper which seems to be correct suggests that
there are 5 d.o.f.(M. Blagojević and J. M. Nester, Phys. Rev. D 102 (2020) no.6, 064025)

Strongly coupling problem? By performing Minkowski
perturbations, one only finds new modes at 4th order in the
perturbation (J. Beltrán Jiménez, A. Golovnev, T. Koivisto and H. Veermäe, [arXiv:2004.07536])
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there are 5 d.o.f.(M. Blagojević and J. M. Nester, Phys. Rev. D 102 (2020) no.6, 064025)

Strongly coupling problem? By performing Minkowski
perturbations, one only finds new modes at 4th order in the
perturbation (J. Beltrán Jiménez, A. Golovnev, T. Koivisto and H. Veermäe, [arXiv:2004.07536])
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f(T,B) gravity

It is possible to extend this theory by adding more
invariants. One interesting theory is when one considers4

f(T,B) gravity action

Sf(T,B) =

∫
f(T,B)e d4x .

If f(T,B) = f(−T +B) = f(
◦
R), one finds the f(

◦
R) theory

in the context of TEGR.
If f(T,B) = f(T ), one gets f(T ) gravity
Other theories related to the boundary term such as
−T + f(B) gravity.

4S. Bahamonde, C. G. Böhmer and M. Wright, Phys. Rev. D 92 (2015) no.10,
104042
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4S. Bahamonde, C. G. Böhmer and M. Wright, Phys. Rev. D 92 (2015) no.10,
104042

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



26/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

General features
Some important theories

f(T,B) gravity

It is possible to extend this theory by adding more
invariants. One interesting theory is when one considers4

f(T,B) gravity action

Sf(T,B) =

∫
f(T,B)e d4x .

If f(T,B) = f(−T +B) = f(
◦
R), one finds the f(

◦
R) theory

in the context of TEGR.

If f(T,B) = f(T ), one gets f(T ) gravity
Other theories related to the boundary term such as
−T + f(B) gravity.
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f(T,B) gravity

The speed of the gravitational waves is exactly c and extra
polarization models, namely the longitudinal and breathing
modes, do appear at first-order perturbation level.

Compatible with Solar System tests.
It can be used to solve the H0 tension
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Teleparallel Horndeski gravity

Condition 1
The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).

Condition 2
The scalar invariants should not be parity violating.

Condition 3
The field equations must be covariant under local Lorentz
transformations.
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Conditions for the theory

Condition 4*
Contractions of the torsion tensor can at most be quadratic.

Any number of contractions of the irreducible parts of the
torsion tensor will result in second order field equations. This
means that an infinite number of terms can be formed in
Teleparallel gravity that give rise to second order field
equations. However, it is unclear how physical such higher
order contributions will be.
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Teleparallel Horndeski gravity

Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten)5

If one adds the scalar field, one can construct the following
7 extra independent scalars:

Possible independent scalars

I2 = vµφ;µ , J1 = aµaνφ;µφ;ν , J3 = vσt
σµνφ;µφ;ν ,

J5 = tσµνt µ̄
σ νφ;µφ;µ̄ , J6 = tσµνt µ̄ν̄

σ φ;µφ;νφ;µ̄φ;ν̄ ,

J8 = tσµνt ν̄
σµ φ;νφ;ν̄ , J10 = εµνρσa

νtαρσφ;µφ;α .

5S. Bahamonde, C. G. Böhmer and M. Krššák, Phys. Lett. B 775 (2017),
37-43
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Teleparallel Horndeski gravity

Teleparallel Horndeski action

STele−deski =

∫
d4x
[
LHorndeski+LTele

]
e =

∫
d4x
[ 5∑

i=2

Li+GTele

]
e ,

where6

GTele = GTele(φ,X, T, Tax, Tvec, I2, J1, J3, J5, J6, J8, J10) ,

L2 = G2(φ,X) , L3 = G3(φ,X)
◦
2φ ,

L4 = G4(φ,X) (−T +B) +G4,X(φ,X)
[( ◦
2φ
)2 − φ;µνφ;µν] ,

L5 = G5(φ,X)Gµνφ;µν −
1

6
G5,X(φ,X)

[ ( ◦
2φ
)3

+ 2φ ν
;µ φ α

;ν φ µ
;α

− 3φ;µνφ
µν
( ◦
2φ
) ]
.

6
S. Bahamonde, K. F. Dialektopoulos and J. Levi Said, Phys. Rev. D 100 (2019) no.6, 064018.
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How to work with different geometric symmetries

Teleparallel theories have the tetrads and spin connection
(being always flat) as the fundamental variables

Then, for a specific symmetry, we assume that both the
spin connection(flat) and the tetrad satisfy the symmetry
condition Lξωabµ = 0 and Lξeaµ = 0.
For a flat FLRW spacetime in Cartesian coordinates
(t, x, y, z), this condition is satisfied for ωabµ = 0 and

FLRW tetrad compatible with cosmological symmetries in the
Weitzenböck gauge

eaµ = diag(N(t), a(t), a(t), a(t))

→ ds2 = N(t)2 − a(t)2(dx2 + dy2 + dz2) .
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eaµ = diag(N(t), a(t), a(t), a(t))

→ ds2 = N(t)2 − a(t)2(dx2 + dy2 + dz2) .
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How to work with different geometric symmetries

Antisymmetric field equations
Important point: the tetrad showed in the last slide in the
Weitzenböck gauge solves all the antisymmetric field equations
for any Teleparallel gravitational theory

Spherical coordinates

Be careful here: In spherical coordinates (t, r, θ, φ), the tetrad in
the Weitzenböck gauge looks more complicated (off-diagonal
terms appear):

eaµ =


N(t) 0 0 0

0 a(t) sin(θ) cos(φ) ra(t) cos(θ) cos(φ) −ra(t) sin(θ) sin(φ)
0 a(t) sin(θ) sin(φ) ra(t) cos(θ) sin(φ) ra(t) sin(θ) cos(φ)
0 a(t) cos(θ) −ra(t) sin(θ) 0

 .
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Cosmological perturbations in TG

In a metrical theory, one perturbs the FLRW metric in the
scalar-vector-tensor decomposition form:

δgµν =

[
−2ϕ a (∂iB + Bi)

a (∂iB + Bi) 2a2
(
−ψδij + ∂i∂jh+ 2∂(ihj) + 1

2hij
)
]
.

In TG, the zeroth-order is eaµ = diag(N(t), a(t), a(t), a(t))
with ωabµ = 0. We perturb this tetrad reproducing the
above metric:

δe
A
µ =

[
ϕ a (∂iβ + βi)

δI i

(
∂ib + bi

)
aδIi

(
−ψδij + ∂i∂jh + 2∂(ihj) + 1

2
hij + εijk

(
∂kσ + σk

)) ]
.

The metric has 10 d.o.f. (4 scalars(1 each), 2 vectors(2
each), 1 tensor(2 each)) and the tetrads 16 d.o.f. (6
scalars(1 each), 4 vectors(2 each), 1 tensor(2 each)).
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Background cosmology in f(T,B) gravity

The modified FLRW equations in f(T,B) gravity are7

−3H2 (3fB + 2fT ) + 3HḟB − 3ḢfB +
1

2
f = κ2ρm ,

−
(

3H2 + Ḣ
)

(3fB + 2fT )− 2HḟT + f̈B +
1

2
f = −κ2pm .

It reproduces ΛCDM cosmology without introducing a
cosmological constant and matches with observations.
Dynamical system: de Sitter and Scaling solutions. Matter
epoch + two accelerated phases with one of them de-Sitter.
It can describe different bounce cosmological solutions.

7
S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77 (2017) no.2, 107
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1

2
f = κ2ρm ,

−
(

3H2 + Ḣ
)

(3fB + 2fT )− 2HḟT + f̈B +
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Cosmological perturbations in f(T,B) gravity

Tensorial perturbations: GW propagation equation is8

ḧij + (3 + αM )Hḣij +
k2

a2
hij = 0 ,

meaning that c2
T = 1 with a Planck mass run rate

αM = 1
H
ḟT
fT

. Thus, fT < 0 is required for stability issues.

Vectorial perturbations: The vector perturbations are not
propagating (as in f(

◦
R)).

8S. Bahamonde, V. Gakis, S. Kiorpelidi, T. Koivisto, J. Levi Said and
E. N. Saridakis, [arXiv:2009.02168 [gr-qc]].
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Cosmological perturbations in f(T,B) gravity

Scalar perturbations: Very messy symmetric and
antisymmetric field equations. The density parameter and
the weak lensing parameter in Fourier space of the
sub-horizon limit obey

δ̈m + 2Hδ̇m ' −
k2ϕ

a2
= 4πρGeffδm =

κ2

2
ρGeffδm ,

Σ =
1

2

Geff

G

(
1 +

ψ

ϕ

)
.

There are different branches having different Geff

depending on the form of f .
For example for fBB + 2fTB + fTT = 0 one finds
Geff = −G 4

3(fT+12H2fTB)
. One can use these results to

constrain models.
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Cosmological perturbations in f(T,B) gravity - H0 tension

f(T ) gravity model does not show tension on the H0 that
prevails in the ΛCDM cosmology, however, σ8 tension
persists(R. C. Nunes, JCAP 05 (2018), 052)
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Background cosmology in Teleparallel scalar-tensor

Teleparallel dark energy9 (coupling like ξφ2T ) exhibits a
quintessence-like, dark-energy-dominated solution, or to the stiff
dark-energy late-time attractor, similarly to standard
quintessence. There is an additional late-time solution, in which
dark energy behaves like a cosmological constant.

Theories with a coupling χφ2B have late time accelerating
attractor solution without requiring any fine tuning of the
parameters. A dynamical crossing of the phantom barrier is also
possible10

TG non-local cosmology with a term like Tf(
◦
2−1T ) in the action

is consistent with the present cosmological data obtained by
SNe Ia + BAO + CC + H0 observations11

9
C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B 704 (2011), 384-387

10
S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034

11
S. Bahamonde, S. Capozziello, M. Faizal and R. C. Nunes, Eur. Phys. J. C 77 (2017) no.9, 628
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Teleparallel Horndeski gravity - perturbations

By considering tensorial perturbations only and after some
cumbersome calculations, one gets the following wave
equation

ḧij + (3 + αM)Hḣij − (1 + αT)
k2

a2
hij = 0,

where αT = c2
T − 1 and the speed of GW being equal to12

Speed of GW in Teleparallel Horndeski

c2T =
G4 −X(φ̈G5,X +G5,φ)−GTele,T

G4 − 2XG4,X −X(Hφ̇G5,X −G5,φ) + 2XGTele,J8 + 1
2
XGTele,J5 −GTele,T

.

12
S. Bahamonde, K. F. Dialektopoulos, V. Gakis and J. Levi Said, Phys. Rev. D 101 (2020) no.8, 084060
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Reviving Horndeski using Teleparallel gravity

For GTele = 0 (standard case), one gets that to achieve a
theory consistent with the GW observations cT = 1, one
requires G5(φ,X) = constant and G4(φ,X) = G4(φ).
Hence, Horndeski gravity is highly constraint.

If one has Teleparallel Horndeski, c2
T is corrected and then

when does no need those conditions. Indeed, G5 = G5(φ)
and G4 = G4(φ,X) still respect this condition.
The theory which respects this condition is

Teleparallel Lagrangian respecting cT = 1 (αT = 0)

L = G̃tele(φ,X, T, Tvec, I2) +

4∑

i=2

Li +G5(φ)Gµνφ;µν .
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Conclusions

TG opens a new windows to study cosmology from a
different perspective where torsion is non-zero and
curvature is zero.

It is possible to formulate a theory which is equivalent to
GR, and then, one can modify these equations to explain
dark energy or inflation.
One needs to be more careful than in Riemannian theories
since the tetrad and spin connection form a pair that
always need to be considered in a proper way to fulfill the
symmetry condition to then solve the antisymmetric field
equations.
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Conclusions

Two important TG theories: f(T,B) (contains f(
◦
R)) and

Teleparallel Horndeski (contains many scalar-tensor
theories).

TG cosmology can explain dark energy, alleviate H0

tension and there are may interesting models with
interesting features.
There are many things totally unexplored in TG, so please
go ahead!

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



46/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

Conclusions

Two important TG theories: f(T,B) (contains f(
◦
R)) and

Teleparallel Horndeski (contains many scalar-tensor
theories).
TG cosmology can explain dark energy, alleviate H0

tension and there are may interesting models with
interesting features.

There are many things totally unexplored in TG, so please
go ahead!

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



46/47

Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

Applications to cosmology
Conclusions and final remarks

Conclusions

Two important TG theories: f(T,B) (contains f(
◦
R)) and

Teleparallel Horndeski (contains many scalar-tensor
theories).
TG cosmology can explain dark energy, alleviate H0

tension and there are may interesting models with
interesting features.
There are many things totally unexplored in TG, so please
go ahead!

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



47/47


	Introduction to Teleparallel theories of gravity
	Basic mathematical ingredients
	Teleparallel equivalent of General Relativity

	Modified Teleparallel theories of gravity
	General features
	Some important theories

	Applications to cosmology
	How to study cosmology in Teleparallel gravity
	Summary of results

	Conclusions and final remarks

