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where 7, is the Minkowski metric.
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nection in Teleparallel gravity

@ GR assumes zero torsion and non-zero curvature
(Levi-Civita connection) whereas Teleparallel gravity (TG)
assumes zero curvature and non-zero torsion. Both
assumes non-metricity to be zero, meaning @ag,w =0.

@ TG has a different connection known as “Weitzenbdck
connection”, defined as

Weitzenbock connection

I, = E’Dye®y = EoP(Oue% + wpue’y) .

@ In TG, it is always possible to find a frame such that
w?, = 0, but this is a gauge choice, so only some tetrads
are compatible with this.
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@ The field strength in TG is the torsion tensor that is defined
as the antisymmetric part of the Weitzenbdck connection

Torsion tensor
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@ The torsion tensor is generally non-vanishing, and
transforms covariantly under both diffeomorphisms and
local Lorentz transformations.

@ The pure tetrad formalism was the initial framework used
for TG, which chooses a specific frame where the spin
connection w%,, vanishes. Be careful choosing the correct
tetrad which is compatible with this gauge.
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Lorentz transformations

@ If one performs a local Lorentz transformation
€', = A%e’,, the metric g, = g/, is invariant. A
consequence of this is that the metric has 10 d.o.f. and the
tetrads 10+6(the extra comes from A%). Different tetrads
can give the same metric.
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tetrads 10+6(the extra comes from A%). Different tetrads
can give the same metric.

@ By Doing the same for the spin connection
walm — wlab'u = Aac(Afl)db wcd# + A%, a,L(A*I)Cb , one
concludes that the tetrad and spin connection which model
a given metric-affine geometry are uniquely determined
only of to a local Lorentz transformation.

@ The torsion tensor is covariant under local Lorentz
transformation.
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Flat condition in Teleparallel gravity

@ The Weitzenbock connection I'”,, is related to the
Levi-Civita connection I'?,,, via

Relationship between affine and spin connections

o
a °a a
Fpuuzrpyu"i_Kp;wa Wpy = W bp,+K bu

o Here K*,, = L(T,,*, + T,,”,, — T? ) is the contortion
tensor.

@ In this connection, it is easy to verify that the spacetime is
globally flat:

Curvature in Teleparallel gravity

Rab,uu(wabu) = 3,uwabu - al/wabu + wac,uwcbv - wacuwcbu =0.
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I scalar and torsion scalar

@ Both GR and TEGR assume V,g,3 = 0 (metric
compatibility).
@ Thus, one can split the curvature as follows

Ricci tensor and contortion
R o = R o + Vo K,y = VKA + K2 K — K2 K, = 0.

o

@ Here, R* ,,, is the curvature tensor computed with the
Levi-Civita connection. Reminder: overcircles mean that
those quantities are computed with the Levi-Civita
connection.

o Be careful here! The general curvature R* ,,, = 0, not

-Foi)\pﬂ'l/ 7é 0
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Ricci scalar and torsion scalar

@ By splitting the curvature tensor and contracting it with the
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icci scalar and torsion scalar

@ By splitting the curvature tensor and contracting it with the
metric g"” R ww = R (Ricci scalar-general one), one gets

Ricci scalar Levi-Civita and torsion scalar

R=R+T-B=0—-R=-T+B.

@ Here, the we have defined (with e = det(e?,) = \/—g)

Torsion scalar and boundary term

1 1 2
T = ZTPWTP‘“’ e iTPWT”“p ~ T, T,"", B= gau(eT’\)\“) ;

@ The Ricci scalar computed from the Levi-Civita connection
R differs from the scalar torsion 7" by a boundary term B.
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@ The TEGR action is formulated based on the torsion scalar
T, namely

Teleparallel equivalent of General Relativity action

1
STEGR = / [_MT+ Lm:| ed'z.

where k? = 87G and L,, is any matter Lagrangian.

@ T and the scalar curvature R differs by a boundary term B
as R =-T+ B so:
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Introduction to Teleparallel theories of gravity

leparallel equivalent of General Relativity action

@ The TEGR action is formulated based on the torsion scalar
T, namely

Teleparallel equivalent of General Relativity action

1
STEGR — / |:_2/<;2T + Lm:| €d4IE o

where k? = 87G and L,, is any matter Lagrangian.

@ T and the scalar curvature R differs by a boundary term B
as R =-T+ B so:

Equivalence between field equations

The field equations arising from Strgr are equivalent to the
Einstein field equations.
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o different ways of understanding gravity

Coupling to matter

In TG, no direct matter coupling to the teleparallel connection is
introduced, in order to preserve the weak equivalence principle —
matter fields retain their universal coupling to the metric and
possibly its Levi-Civita connection (in the case of spinor fields).
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different ways of understanding gravity

Coupling to matter

In TG, no direct matter coupling to the teleparallel connection is
introduced, in order to preserve the weak equivalence principle —
matter fields retain their universal coupling to the metric and
possibly its Levi-Civita connection (in the case of spinor fields).

| \

Equivalence on their field equations

TEGR has the same equations as GR, so CLASSICALLY it is
impossible to make any observation to distinguish between
them. All classical experiments already done, that have
confirmed GR, also can be understood as a confirmation of
TEGR.
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ally not only two, but three!

@ There is another geometrical theory of gravity having the
same Einstein field equations as its field equations which
is based in non-metricity.

o Symmetric Teleparallel gravity: torsion and curvature are
zero and non-metricity Quu = Vagu, # 0 is non-vanishing.

@ By imposing that torsion is zero and by imposing that the
Ricci scalar vanishes (total) we arrive at

Ricci scalar and non-metricity

R=R+Q+Da(Q°- 0% =0 R=-Q+Da(@* - @),
where Q = %Qaﬁj@aﬁ’y - %Qaﬁw@ﬁa’y - %Qa@a + %QaQaa
ro = Qo&\)\ and Qa = QA)\a-



Flat spacetime

T +2D,T" = Q + 2D, (Q* — Q)

Geometrical trinity of gravity
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What happens if we modify TEGR?

If we modify the TEGR action, a priori there is no equivalence

between modified theories from GR and modified Teleparallel
theories.
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Jified teleparallel theories

What happens if we modify TEGR?

If we modify the TEGR action, a priori there is no equivalence
between modified theories from GR and modified Teleparallel
theories.

| A\

Are Teleparallel theories Lorentz invariant?

There is a lot of misconceptions in the literature since TEGR
and their first modifications were proposed in the pure-tetrad
formalism, which assumes that w“;, = 0 globally. By assuming
this choice, TEGR is pseudo local Lorentz invariant (invariant
up to a boundary term) and in modified TG, there is a breaking
of the local Lorentz invariant.

A\
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ant properties of Teleparallel theories

o Gauge nature: Teleparallel gravity can be written as the
gauge theory of translations with the torsion tensor being
the field strength of the theory.
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Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravity

o Gauge nature: Teleparallel gravity can be written as the
gauge theory of translations with the torsion tensor being
the field strength of the theory.

@ The division between inertial and gravitational effects:
In GR, gravity and inertia cannot be separated, but in TG,
there are some arguments in favour that it is possible to
separate them by putting all the inertial effects in w%, and
gravity in the tetrads e“,.
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Modified Teleparallel theories of gravity

o Teleparallel theories have the tetrads and spin connection
as the fundamental variables, so that, one most commonly
assumes an action which is of the form

S = Sgle, w] + Smle, xJ,

where the gravitational part Sy of the action depends on
the tetrad e, and the spin connection w* g, while the
matter part depends on the tetrad eA# and arbitrary matter
fields x!, but not on the spin connection.
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Modified Teleparallel theories of gravity

o Teleparallel theories have the tetrads and spin connection
as the fundamental variables, so that, one most commonly
assumes an action which is of the form

S = Sgle, w] + Smle, xJ,

where the gravitational part Sy of the action depends on
the tetrad e, and the spin connection w* g, while the
matter part depends on the tetrad eA# and arbitrary matter
fields x!, but not on the spin connection.

@ Particles (bosonic or femionic) follow the standard
geodesic equation.
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Modified Teleparallel theories of gravity

ant properties of Teleparallel theories

@ Variations of any action should be taken with respect to
both variables (with the emphasis that the spin connection
is non-arbitrary but always flat).
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ant properties of Teleparallel theories

@ Variations of any action should be taken with respect to
both variables (with the emphasis that the spin connection
is non-arbitrary but always flat).

@ Since wABH is a pure-gauge quantity, it can be shown that
the the antisymmetric part of the field equations arising
from variations w/r to the tetrads e, coincides with the
variations of the action w/r to wAB,L.
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ant properties of Teleparallel theories

o Field equations are fully covariant (Lorentz and diffeo), and
after finding them, it is possible to choose a gauge, known
as the Weitzenbdck gauge which is a special frame where

wABu = 0.
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ant properties of Teleparallel theories

o Field equations are fully covariant (Lorentz and diffeo), and
after finding them, it is possible to choose a gauge, known
as the Weitzenbdck gauge which is a special frame where
wAB“ = 0.

@ This gauge choice can be only taken after deriving the field
equations and if one does this, only some tetrads will be
compatible with this choice.
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eneral Relativity (NGR)

The torsion tensor can be decomposed in its irreducible parts

as
_ 1 TVoP _ 70
ay = 6€uuap y U =1 ops
1 1
taul/ = 5 (Tauu + Tuau) + 6 (guavu + gl/;ﬂ}a) - ggauvu )

where €,,.., is the totally anti-symmetric Levi-Civita symbol.
From these we build the scalars

Tax = aua” y Tvec = UNU“ y Tten= tauutgwj )
and the torsion scalar is a linear combination

3 2 2
iTax + then - gTvec :

Sebastian Bahamonde
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Modified Teleparallel theories of gravity

aeneral Relativity (NGR)

@ The first Teleparallel modification was introduced in 19797,
and it is labelled as New General Relativity. Its action
reads

K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979), 3524-3553
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w General Relativity (NGR)

@ The first Teleparallel modification was introduced in 19797,
and it is labelled as New General Relativity. Its action
reads

New General Relativity action

1
SNGR = 27/€2 d4$ [ClTvec + T + C?;Tten] €.

K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979), 3524-3553
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Modified Teleparallel theories of gravity

General Relativity (NGR)

@ The first Teleparallel modification was introduced in 19797,
and it is labelled as New General Relativity. Its action
reads

New General Relativity action

1
SNGR = T d4$ [ClTvec + T + C?;Tten] €.

0 Ifey =—2, co =3, c5 = 2, the above action is equivalent to

the TEGR one.

K. Hayashi and T. Shirafuji, Phys. Rev. D 19 (1979), 3524-3553
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eneral Relativity (NGR)

@ In this theory, torsion would represent additional degrees of
freedom relative to the curvature, which would thus
produce deviations in relation to general relativity

2J. Beltran Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
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@ In this theory, torsion would represent additional degrees of
freedom relative to the curvature, which would thus
produce deviations in relation to general relativity

@ This theory contains parity-preserving quadratic form of
the torsion with three free parameters.

2J. Beltran Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
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eneral Relativity (NGR)

@ In this theory, torsion would represent additional degrees of
freedom relative to the curvature, which would thus
produce deviations in relation to general relativity

@ This theory contains parity-preserving quadratic form of
the torsion with three free parameters.

@ Perturbations around Minkowski shows that the unique
stable Minkowski background that includes gravity is the
TEGR case?.

2J. Beltran Jiménez and K. F. Dialektopoulos, JCAP 01 (2020), 018.
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Modified Teleparallel theories of gravity
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Modified Teleparallel theories of gravity General features
Some important theories

f(T) gravity

@ Inspired from f (f%) gravity, Ferraro and Fiorini® introduced
another teleparallel theory by generalising ' — f(T) in the
action:

f(T') gravity action

Sty = / f(Ted z.

@ The torsion scalar 7' depends on the first derivatives of the
tetrads — Second order theory:

Not equivalence between f(R) and f(T)
Field equations of f(T')  Field equations of f(R)

SR. Ferraro and F. Fiorini, Phys. Rev. D 75 (2007), 084031.

Sebastian Bahamonde Teleparallel theories of gravity and applications to cosmology



Modified Teleparallel theories of gravity

@ Lots of misunderstandings in the literature since this theory
was firstly formulated in the non-Lorentz covariance
formulation.

Sebastian Bahamonde



Modified Teleparallel theories of gravity

@ Lots of misunderstandings in the literature since this theory
was firstly formulated in the non-Lorentz covariance
formulation.

@ Now, we know that the spin connection must be included in
the definition of torsion to keep the theory local Lorentz
invariance.

Sebastian Bahamonde



Modified Teleparallel theories of gravity

@ Lots of misunderstandings in the literature since this theory
was firstly formulated in the non-Lorentz covariance
formulation.

@ Now, we know that the spin connection must be included in
the definition of torsion to keep the theory local Lorentz
invariance.

@ The Hamiltonian analysis is extremely difficult. Due to this,
different papers have claimed different d.o.f.

Sebastian Bahamonde



Modified Teleparallel theories of gravity

ravity

@ Lots of misunderstandings in the literature since this theory
was firstly formulated in the non-Lorentz covariance
formulation.

@ Now, we know that the spin connection must be included in
the definition of torsion to keep the theory local Lorentz
invariance.

@ The Hamiltonian analysis is extremely difficult. Due to this,
different papers have claimed different d.o.f.

@ The last paper which seems to be correct suggests that
there are 5 d.o.f.im. Blagojevié and J. M. Nester, Phys. Rev. D 102 (2020) no.6, 064025)

Sebastian Bahamonde



Introduction to Teleparallel theories of gravity
Modified Teleparallel theories of gravi

@ Lots of misunderstandings in the literature since this theory
was firstly formulated in the non-Lorentz covariance
formulation.

@ Now, we know that the spin connection must be included in
the definition of torsion to keep the theory local Lorentz
invariance.

@ The Hamiltonian analysis is extremely difficult. Due to this,
different papers have claimed different d.o.f.

@ The last paper which seems to be correct suggests that
there are 5 d.o.f.im. Blagojevié and J. M. Nester, Phys. Rev. D 102 (2020) no.6, 064025)

@ Strongly coupling problem? By performing Minkowski
perturbations, one only finds new modes at 4th order in the

pertu rbation (. seitran Jiménez, A. Golovney, T. Koivisto and H. Veermae, [arXiv:2004.07536])
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) gravity

@ |t is possible to extend this theory by adding more
invariants. One interesting theory is when one considers*

4. Bahamonde, C. G. Béhmer and M. Wright, Phys. Rev. D 92 (2015) no.10,
104042
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o If f(T, B) = f(—T + B) = f(R), one finds the f(R) theory
in the context of TEGR.
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, B) gravity

@ |t is possible to extend this theory by adding more
invariants. One interesting theory is when one considers*

f(T, B) gravity action

Sf(T,B) :/f(T,B)ed4:c

O

o If f(T, B) = f(—T + B) = f(R), one finds the f(R) theory
in the context of TEGR.

o If f(T,B)= f(T), one gets f(T) gravity

4. Bahamonde, C. G. Béhmer and M. Wright, Phys. Rev. D 92 (2015) no.10,
104042
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, B) gravity

@ |t is possible to extend this theory by adding more
invariants. One interesting theory is when one considers*

f(T, B) gravity action

Sf(T,B) :/f(T,B)ed4:c

O

o If f(T, B) = f(—T + B) = f(R), one finds the f(R) theory
in the context of TEGR.

o If f(T,B) = f(T), one gets f(T') gravity

@ Other theories related to the boundary term such as
—T + f(B) gravity.

43. Bahamonde, C. G. Béhmer and M. Wright, Phys. Rev. D 92 (2015) no.10,
104042
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Modified Teleparallel theories of gravity

) gravity

@ The speed of the gravitational waves is exactly ¢ and extra
polarization models, namely the longitudinal and breathing
modes, do appear at first-order perturbation level.

@ Compatible with Solar System tests.
@ It can be used to solve the Hj tension
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The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).
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Some important theories

Teleparallel Horndeski gravity

The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).

The scalar invariants should not be parity violating.
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Modified Teleparallel theories of gravity General features
Some important theories

Teleparallel Horndeski gravity

The resulting field equations must be at most second order in
terms of derivatives of the tetrad fields (or equivalently second
order in terms of metric tensor derivatives).

The scalar invariants should not be parity violating.

The field equations must be covariant under local Lorentz
transformations.
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Some important theories

Conditions for the theory

Condition 4*
Contractions of the torsion tensor can at most be quadratic.
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Modified Teleparallel theories of gravity

ditions for the theory

—

Condition 4*
Contractions of the torsion tensor can at most be quadratic.

Any number of contractions of the irreducible parts of the
torsion tensor will result in second order field equations. This
means that an infinite number of terms can be formed in
Teleparallel gravity that give rise to second order field
equations. However, it is unclear how physical such higher
order contributions will be.
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rallel Horndeski gravity

o Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten)®
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Modified Teleparallel theories of gravity

parallel Horndeski gravity

o Taking quadratic contractions of the torsion tensor, the
most general Lagrangian of Teleparallel gravity satisfying
the conditions turns out to be f(Tax, Tvec, Tten)®

o If one adds the scalar field, one can construct the following
7 extra independent scalars:

Possible independent scalars

12 = U‘u(b;u ) Jl = aualld’;/ﬂb;u 5 J3 = Uatguy¢;N¢;V )
Js ="t F oudn,  Jo =t b dindi

JS = tguyt0u9¢;u¢;ﬂ ) Jl() - euupaaytapgqs;ud);a .

5S. Bahamonde, C. G. Béhmer and M. Kr§8ak, Phys. Lett. B 775 (2017),
37-43
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Modified Teleparallel theories of gravity

leparallel Horndeski gravity

Teleparallel Horndeski action

5
STele—deski = / d435'[[rHorndeski+£Tele}€ = / d4$[zfri+GTele}e7
i=2

where®

Grele = Gele (¢, X, T, Tax, Tvec, I2, J1, J3, J5, J6, J3, J10)
Ly =Ga2(d,X), L3=G3(¢,X)0¢,
£4=Ga(6,X) (=T + B) + Ga,x (6, X) [(89)° — dyuv ™| ,
L5 = Gs(6, X) Gy — <Gia,x (6, X) [ (B9)° + 20,76, %60"

— 3¢ (B9) |.

68. Bahamonde, K. F. Dialektopoulos and J. Levi Said, Phys. Rev. D 100 (2019) no.6, 064018.
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FIG. 1: Relationship between Teleparallel Horndenski and various theories
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Applications to cosmology

)W to work with different geometric symmetries

o Teleparallel theories have the tetrads and spin connection
(being always flat) as the fundamental variables

@ Then, for a specific symmetry, we assume that both the
spin connection(flat) and the tetrad satisfy the symmetry
condition Lew®,, = 0 and L¢e?, = 0.

o For a flat FLRW spacetime in Cartesian coordinates
(t,z,y, z), this condition is satisfied for w*, = 0 and

FLRW tetrad compatible with cosmological symmetries in the

Weitzenbock gauge

e, = diag(N(t),a(t), a(t),a(t))
— ds? = N(t)? — a(t)*(dz® + dy® + d2?).
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How to study cosmology in Teleparallel gravity
Applications to cosmology Summary of results

How to work with different geometric symmetries

Antisymmetric field equations

Important point: the tetrad showed in the last slide in the
Weitzenbdck gauge solves all the antisymmetric field equations
for any Teleparallel gravitational theory
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Applications to cosmology

W to work with different geometric symmetries

Antisymmetric field equations

Important point: the tetrad showed in the last slide in the
Weitzenbdck gauge solves all the antisymmetric field equations
for any Teleparallel gravitational theory

| A\

Spherical coordinates

Be careful here: In spherical coordinates (¢, r, 6, ¢), the tetrad in
the Weitzenbock gauge looks more complicated (off-diagonal
terms appear):

N(t) 0 0 0
co — 0 a(t) sin(0) cos(¢) ra(t)cos(f) cos(p) —ra(t)sin(f)sin(¢p) )
® 0 a(t) sin(0) sin(p)  ra(t) cos(f)sin(¢p)  ra(t)sin(f) cos(¢) ’
0 a(t) cos(0) —ra(t) sin(f) 0

v
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Applications to cosmology

ological perturbations in TG

@ In a metrical theory, one perturbs the FLRW metric in the
scalar-vector-tensor decomposition form:

Sa — —2p a (0;B + B;)
G = a (813 T Bz) 2a? (_wéij + Bzajh + 28(ihj) + %h”)
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scalar-vector-tensor decomposition form:

Sa — —2p a (0;B + B;)
G = a (813 T Bz) 2a? (_wéij + Bzajh + 28(ihj) + %h”) '
@ In TG, the zeroth-order is e, = diag(N(t), a(t), a(t), a(t))

with w?,, = 0. We perturb this tetrad reproducing the
above metric:
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Introduc

ema

ations in TG

@ In a metrical theory, one perturbs the FLRW metric in the
scalar-vector-tensor decomposition form:

Sa — —2p a (0;B + B;)
G a (813 + BZ) 2a2 (_wéij + Bzajh + 28(ihj) + %h”) '

@ In TG, the zeroth-order is e, = diag(N(t), a(t), a(t), a(t))
with w?,, = 0. We perturb this tetrad reproducing the
above metric:

seA P a(9;B + Bi)
A ; . x )
Iz 5T, (0’“b+ b’) asli (ﬂpaij +8:05h + 200 hyy + Shij +eijr (aka + o'k))

@ The metric has 10 d.o.f. (4 scalars(1 each), 2 vectors(2
each), 1 tensor(2 each)) and the tetrads 16 d.o.f. (6
scalars(1 each), 4 vectors(2 each), 1 tensor(2 each)).
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round cosmology in f(7, B) gravity

@ The modified FLRW equations in f(T, B) gravity are’

~3H? (3f5 + 2r) + 3Hf5 —3Hfu+ of = pm,
~ (352 + ) @fp +24r) ~2Hjr + fo+ 5 = ~<*pm.

7S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77 (2017) no.2, 107
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ound cosmology in f(7, B) gravity

@ The modified FLRW equations in f(T, B) gravity are’

~3H? (3f5 + 2r) + 3Hf5 —3Hfu+ of = pm,
~ (352 + ) @fp +24r) ~2Hjr + fo+ 5 = ~<*pm.

@ It reproduces ACDM cosmology without introducing a
cosmological constant and matches with observations.

@ Dynamical system: de Sitter and Scaling solutions. Matter
epoch + two accelerated phases with one of them de-Sitter.

7S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77 (2017) no.2, 107
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Applications to cosmology

Conclusions and final remarks

ound cosmology in f(7, B) gravity

@ The modified FLRW equations in f(T, B) gravity are’

~3H? (3f5 + 2r) + 3Hf5 —3Hfu+ of = pm,
~ (352 + ) @fp +24r) ~2Hjr + fo+ 5 = ~<*pm.

@ It reproduces ACDM cosmology without introducing a
cosmological constant and matches with observations.

@ Dynamical system: de Sitter and Scaling solutions. Matter
epoch + two accelerated phases with one of them de-Sitter.

@ It can describe different bounce cosmological solutions.

7S. Bahamonde and S. Capozziello, Eur. Phys. J. C 77 (2017) no.2, 107
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Applications to cosmology

logical perturbations in f(7', B) gravity

o Tensorial perturbations: GW propagation equation is®

k,2

'hij + (3+aM)Hhij I CTZhij =0,

meaning that ¢2. = 1 with a Planck mass run rate
oy = %J;—; Thus, fr < 0is required for stability issues.

8S. Bahamonde, V. Gakis, S. Kiorpelidi, T. Koivisto, J. Levi Said and
E. N. Saridakis, [arXiv:2009.02168 [gr-qc]].
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Applications to cosmology

Conclusions and final remarks

logical perturbations in f(7, B) gravity

o Tensorial perturbations: GW propagation equation is®

k,2

'hij + (3+aM)Hhij I CTZhij =0,

meaning that ¢2. = 1 with a Planck mass run rate
oy = %J;—; Thus, fr < 0is required for stability issues.

@ Vectorial perturbations: The vector perturbations are not
propagating (as in f(R)).

8S. Bahamonde, V. Gakis, S. Kiorpelidi, T. Koivisto, J. Levi Said and
E. N. Saridakis, [arXiv:2009.02168 [gr-qc]].
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Applications to cosmology

logical perturbations in f(7', B) gravity

@ Scalar perturbations: Very messy symmetric and
antisymmetric field equations. The density parameter and
the weak lensing parameter in Fourier space of the
sub-horizon limit obey

]{52 2
Y — 4 pG b = %paeﬁam,

P
1Geff Tﬁ
D= = 1+ .
2G<+<p>

5m+2H5mf:—
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Applications to cosmology

logical perturbations in f(7', B) gravity

@ Scalar perturbations: Very messy symmetric and
antisymmetric field equations. The density parameter and
the weak lensing parameter in Fourier space of the
sub-horizon limit obey

]{52 2
Y — 4 pG b = %paeﬁam,

P
1Geff Tﬁ
D= = 1+ .
2G<+<p>

5m+2H5mf:—

@ There are different branches having different G.g
depending on the form of f.
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Introduc

Ioglcal perturbétions in f(T, B) gravity

@ Scalar perturbations: Very messy symmetric and
antisymmetric field equations. The density parameter and
the weak lensing parameter in Fourier space of the
sub-horizon limit obey

g . k2 2
Om + 2H o, ~ _7;0 = 47TpGeff5m = %pGeff(snu
a

1Geff w
D= = 1+ .
2 G ( +<p>

@ There are different branches having different G.g
depending on the form of f.

@ For example for fBB + 2frg + frr = 0 one finds
Geg = —GW One can use these results to

constrain models.
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Applications to cosmology

ological perturbations in f(7', B) gravity - H, tension

o f(T) gravity model does not show tension on the H, that
prevails in the ACDM cosmology, however, og tension
persists(R. C. Nunes, JCAP 05 (2018), 052)

68 72 76 80
Hl)

Figure 4. Parametric space in the plane Hy - o, where the regions in red (blue) show the constraints
for ACDM model from CMB + BAO (CMB + BAO + Hy), respectively. The regions in black (green)
show the constraints for f(T) gravity from CMB + BAO (CMB + BAO + Hy), respectively. The
vertical gray band corresponds to Hy = 73.24 % 1.74 km s~! Mpc~!
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Applications to cosmology

ound cosmology in Teleparallel scalar-tensor

o Teleparallel dark energy® (coupling like £¢*T ) exhibits a
quintessence-like, dark-energy-dominated solution, or to the stiff
dark-energy late-time attractor, similarly to standard
quintessence. There is an additional late-time solution, in which
dark energy behaves like a cosmological constant.

9C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B 704 (2011), 384-387
i S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034
i S. Bahamonde, S. Capozziello, M. Faizal and R. C. Nunes, Eur. Phys. J. C 77 (2017) no.9, 628
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o Teleparallel dark energy® (coupling like £¢*T ) exhibits a
quintessence-like, dark-energy-dominated solution, or to the stiff
dark-energy late-time attractor, similarly to standard
quintessence. There is an additional late-time solution, in which
dark energy behaves like a cosmological constant.

@ Theories with a coupling x¢2B have late time accelerating
attractor solution without requiring any fine tuning of the
parameters. A dynamical crossing of the phantom barrier is also
possible’®

9C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B 704 (2011), 384-387
0 S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034
i S. Bahamonde, S. Capozziello, M. Faizal and R. C. Nunes, Eur. Phys. J. C 77 (2017) no.9, 628
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Applications to cosmology

Conclu and final remarks

ound cosmology in Teleparallel scalar-tensor

o Teleparallel dark energy® (coupling like £¢*T ) exhibits a
quintessence-like, dark-energy-dominated solution, or to the stiff
dark-energy late-time attractor, similarly to standard
quintessence. There is an additional late-time solution, in which
dark energy behaves like a cosmological constant.

@ Theories with a coupling x¢2B have late time accelerating
attractor solution without requiring any fine tuning of the
parameters. A dynamical crossing of the phantom barrier is also
possible’®

@ TG non-local cosmology with a term like Tf(C~1T) in the action

is consistent with the present cosmological data obtained by
SNe la + BAO + CC + HO observations!"

9C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B 704 (2011), 384-387
0 S. Bahamonde and M. Wright, Phys. Rev. D 92 (2015) no.8, 084034
i S. Bahamonde, S. Capozziello, M. Faizal and R. C. Nunes, Eur. Phys. J. C 77 (2017) no.9, 628
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Applications to cosmology

arallel Horndeski gravity - perturbations

@ By considering tensorial perturbations only and after some
cumbersome calculations, one gets the following wave
equation

2

. k
hij-l-(?)-l—am)Hhij — (1+CYT)¥

fi; =10,

g2 S. Bahamonde, K. F. Dialektopoulos, V. Gakis and J. Levi Said, Phys. Rev. D 101 (2020) no.8, 084060
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Applications to cosmology

3parallel Horndeski gravity - perturbations

@ By considering tensorial perturbations only and after some
cumbersome calculations, one gets the following wave
equation

k?
hi; =0,

a2

hij + (3 —|-Oé|\/|) Hh” — (1 + OZT)

where a7 = ¢ — 1 and the speed of GW being equal to'2

Speed of GW in Teleparallel Horndeski
Ga — X (¢G5 x + Gs5,4) — Gele,T

2
CT = 5 o
G4 — 2XGyx — X(HpG5,x — Gs5,6) + 2XGrele, 15 + 5 X GTele, 35 — GTele, T

g2 S. Bahamonde, K. F. Dialektopoulos, V. Gakis and J. Levi Said, Phys. Rev. D 101 (2020) no.8, 084060
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Applications to cosmology

ng Horndeski using Teleparallel gravity

@ For Gree = 0 (standard case), one gets that to achieve a
theory consistent with the GW observations ¢y = 1, one
requires Gs(¢, X)) = constant and G4 (¢, X) = Ga(¢).
Hence, Horndeski gravity is highly constraint.
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@ For Gree = 0 (standard case), one gets that to achieve a
theory consistent with the GW observations ¢y = 1, one
requires Gs(¢, X)) = constant and G4 (¢, X) = Ga(¢).
Hence, Horndeski gravity is highly constraint.

o If one has Teleparallel Horndeski, c2. is corrected and then
when does no need those conditions. Indeed, G5 = G5(¢)
and G4 = G4(¢, X) still respect this condition.

@ The theory which respects this condition is

Teleparallel Lagrangian respecting ¢y = 1 (o = 0)

4
L = Grete($, X, T, Tvee, I2) + > Li + G5(¢) Gy ™ .
=2
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Conclusions and final

sions

@ TG opens a new windows to study cosmology from a
different perspective where torsion is non-zero and
curvature is zero.

@ ltis possible to formulate a theory which is equivalent to
GR, and then, one can modify these equations to explain
dark energy or inflation.

@ One needs to be more careful than in Riemannian theories
since the tetrad and spin connection form a pair that
always need to be considered in a proper way to fulfill the
symmetry condition to then solve the antisymmetric field
equations.
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Conclusions and final remarks

sions

@ Two important TG theories: f(T, B) (contains f(]o%)) and
Teleparallel Horndeski (contains many scalar-tensor
theories).

@ TG cosmology can explain dark energy, alleviate H
tension and there are may interesting models with
interesting features.

@ There are many things totally unexplored in TG, so please
go ahead!
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