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@ Why modified gravity?
@ Basic geometrical quantities
@ Tetrads and spin connection

@ Trinity of gravity: GR, TEGR and STEGR.

@ Gauge formalism
@ Dynamics

@ Spherical symmetry
@ Observational constraints
@ Axial symmetry
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General Relativity is based upon different assumptions that can
be understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

o Equivalence principle

@ General covariance: Invariant under diffeomorphisms and
Local Lorentz transformations.

Riemannian geometry: The connection is the Levi-Civita
one.

4-dimension

2nd order derivatives:gravitational action contains only
second derivatives.
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General Relativity is based upon different assumptions that can
be understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

o Equivalence principle

@ General covariance: Invariant under diffeomorphisms and
Local Lorentz transformations.

@ Riemannian geometry: The connection is the Levi-Civita
one.

@ 4-dimension

@ 2nd order derivatives:gravitational action contains only
second derivatives.

o Locality
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odified gravity?

@ GR is not compatible with quantum field theory;

@ The cosmological constant A problem; Dark energy, dark
matter.

@ The Hj tension: 50 tension between current expansion rate
H, using Planck data and direct model-independent
measurements in the local universe;

@ Big Bang singularity;

@ What is really the inflaton?

@ Strong gravity regime needs to be tested;

@ A good way to understand GR is to modify it;
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How to modify it

Non-Riemannian geometry Higher-order theories

Einstein-Cartan
Poincaré gauge gravity
Teleparallel theories

&

Quantum gravity theories

Hotava-Lifschitz String theory

Other approaches

Pad bh:
at;]]e] f;i d.an Holography ; Other approaches

Analogue
gravity

Quantization

[Supergravity] [Rainbow gravity]

D-dimensional theories Tensor-vector-scalar theories

Kaluza-Klein

DGP [Einstein-}Ether] (Proca theories]

Beyond Horndeski

Figure: Classification of theories of gravity. (S. Bahamonde et.al., “Teleparallel Gravity: From
Theory to Cosmology,” [arXiv:2106.13793 [gr-qc]].)
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damental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental
variables are a metric g,,, (10 comp.) as well as the
coefficients I'”,,,, (64 comp.) of an affine connection.

@ The most general connection can be written as

Torsion part

Levi-Civita

A A Lo A L a A
ey= Iw +§T w — Ty V)+§Q = Q" vy, (1)

Curvature |RFy 0 = OplHye — Op Ty +TH )T e — TH,T7,,

Torsion THy, =TF, —TH,,

Nonmetricity|Quup = Vugvp = Ougvp — L vugop — L7 pugvo
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at does curvature geometrically represent?

Curvature tensor R,

Rotation experienced by a vector when it is parallel transported
along a closed curve
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Introduction to Metric-affine gravity

Why modified gravity?
Basic geometrical quantities
Tetrads and spin connection

What does torsion geometrically represent?

Torsion tensor 7,

non-closure of the parallelogram formed when two infinitesimal
vectors are parallel transported along each other.
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Basic geometrical quantities

Tetrads and spin connection

What does non-metricity geometrically represent?

Non-metricity tensor Q...
measures how much the length and angle of vectors change as

we parallel transport them, so in metric spaces the length of

vectors is conserve

Black Holes in metric-affine
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oortant special cases of metric-affine geometries

o Riemann-Cartan geometry (Q,,, = 0): If non-metricity
vanishes, the metric satisfies the metric-compatibility
condition Vg5 = 0. Poincaré grvity assumes this
geometry.

o Weyl gravity (TO‘W = 0): If the torsion vanishes, the
connection is called symmetric fPM = 0.

o General Teleparallel geometry (R,,.3 = 0): In the case
of vanishing curvature, the connection is flat.
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ortant special cases of metric-affine geometries

o Riemannian geometry (7°,, = 0, Qu, = 0): The
connection is symmetric and metric compatible, leading to
I, = f‘PW. GR and the majority of the theories are here.

o Torsional Teleparallel geometry (R,,.5 = 0, Qo = 0):
The metric satisfies the metric-compatibility condition but
torsion is non-zero. This talk will be based on this.

o Symmetric Teleparallel geometry (2,5 = 0,75, = 0):
Both torsion tensor and curvature are zero and the
gravitational interactions are only mediated through
non-metricity.
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ry and continuum mechanics

@ In the context of continuum mechanics, the geometric tools
of gravity have been used to describe various effects in
continuum mechanics.

o Deformations can be understood as analogous to take a
Minkowski crystal and deform it. They can be associated to
change in the microstructure of crystals.

@ Curvature: can be understood as disclination (rotational
symmetries are broken)

@ Torsion: can be understood as dislocations (translation
symmetries are broken) which are crystallographic defects,
or irregularities, in the crystal structure.

@ Nonmetricity: can be understood as crystalline structure
with point defects (vacancies/intersticials)
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Figure: Crystalline structure and its analogy with curvature, torsion and
non-metricity
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Crystal dislocations are shown against a regular crystal with no dislocation
(left), and where screw (middle) and edge (right) dislocations are represented.
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ads and the spin connection

@ An alternative description of the metric-affine geometry
outlined in the preceding section is to use a tetrad e®,, and a
spin connection w%,,.

@ Latin letters a,b =0, ..., 3 denote Lorentz indices, while
small Greek letters i, v = 0, ..., 3 denote spacetime indices
(where numbers refer to spacetime coordinates on the
respective spaces).

@ From the tetrad one constructs the Lorentzian metric via the
relation

Metric and tetrads

b b
Juv = nabea,ue v g;w = 77a E By

where n,;, = diag(1, —1,—1, —1) denotes the Minkowski
metric.
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s fields
The vectors (E4) form an orthonormal basis of the tangent
space, i.e.,
g(E(za Eb) = g,LwEauEbV = Nab - (2)
ay

Yy =const.

E,
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@ The frame coefficients E,* are also required in order to
calculate the coefficients I'#, , of the affine connection from
the spin connection w?,, via

[, = E.f (ayeau + d)abl,ebu) , (3)
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onnection and tetrads

@ The frame coefficients E,* are also required in order to
calculate the coefficients I'#, , of the affine connection from
the spin connection w?,, via

[, = E.f (ayeau + d)abl,ebu) , (3)

@ This is the unique affine connection satisfying the so-called
“tetrad postulate”

o NEREIS @“bueby — fpwe“p =0. (4)
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onnection and tetrads

@ One advantage of the formulation in terms of a tetrad and
spin connection, is the fact that the curvature, torsion and
non-metricity become properties of the spin connection
only, and are independent of the choice of the tetrad.

@ Then, we can define the curvature, torsion and
nonmetricity as:

Rablw = ua)abl/ - Va}abu + (Dac,ua}cbu - ajacua}cbu ) (5)
Ta;w = aueal/ - aueau + («Dabpeby - ajabueb,u ) (6)
Q,uab = _nacajcb,u - ncba}cau . (7)
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of gravity

As mentioned before, we can split the connection as

[f,, =T, + Kf,, + LF,, =T, + D", , (8)
where
% — %g‘“’ (Ov9op + Opgve — Os9up) , Levi Civita connection
f(“l,p = % ( ~l,“p + Tp“,, = T“l,p) ,  Contortion tensor
IN/“l,p = % (Q“Vp — NV“p — Qp“y) , Disformation tensor .
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of gravity - curvature tensor

@ The curvature becomes
Ruypg = Ruupa+%pbuua _%abuup"kburpb‘rua _-DHTO'DTVp o
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of gravity - curvature tensor

@ The curvature becomes

Ruypa = Ruupa+v DMVO’ -V DHV{)—’_DHT[)DTVO'_-DHTO'DTVp .

@ Now, by contracting the curvature tensor to obtain the Ricci
scalar R = g" R?,,,,, we find
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Trinity of gravity

ity of gravity - curvature tensor

@ The curvature becomes

R'uypg = Ruupa+v Duua_v DMVp""DMTpDTVJ_[)MTObTVp .

@ Now, by contracting the curvature tensor to obtain the Ricci
scalar R = g" R?,,,,, we find

Ricci scalar decomposition

B= R+ (T+2Vu(v=gT%") + (Q+ Vu@", - V,Q* ) +C

with
T:= Tp>"‘””TpA,.i + 2T"A”T,§M — 4Tp”,€T”)‘,\ , Torsion scalar,
1 1 1 1 ~
Q:= 1 Qangaﬁ'y + 5 QQBWQ&” + 1 Q.Q% — 5 Q.Q" , Nonmetricity scalar
C = 2(Qupn T + Qo7 T — Q7 T") .
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Trinity of gravity - General Relativity
@ GR assumes zero torsion and nonmetricity so that
Ricci scalar GR
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@ GR assumes zero torsion and nonmetricity so that

Ricci scalar GR
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@ Then, GR is constructed from the Ricci scalar
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Trinity of gravity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - General Relativity

@ GR assumes zero torsion and nonmetricity so that
Ricci scalar GR

=R+ (T = 2%uv=g17") + (@ + VQ=V,0,) + £ = R.

@ Then, GR is constructed from the Ricci scalar
Einstein-Hilbert action

1
SGr = / [_ﬁR I Lign

where % = 87G and L, is any matter Lagrangian.
@ The Einstein’s field equations are obtained by taking
1

2

Sebastian Bahamonde Black Holes in metric-affine

]\/—_gd4as.

variations w/r to the metric: | R, —

2
Guv = KTy |
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Trinity of gravity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - Teleparallel equivalent of GR

o Teleparallel equivalent of GR (TEGR) assumes zero
curvature and zero nonmetricity so that

Ricci scalar TEGR

R=0=R+ (T +29.(/=g7",")) +M+E,

<~ R=-T+V,(V—9T*,*):=-T+ Br.

@ Then, TEGR is constructed from the torsion scalar T’

2K2

STEGRI/[——T+L ]ed4x.
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Trinity of gravity

nity of gravity - Teleparallel equivalent of GR

o Teleparallel equivalent of GR (TEGR) assumes zero
curvature and zero nonmetricity so that

Ricci scalar TEGR

R=0=R+ (T+2VH(\/ngpp“)) +M+Z,

< R=-T+V,(vV-¢T?,"):=-T + Br.

@ Then, TEGR is constructed from the torsion scalar T’

1
STECGR = / |:—T aF Lm:| ed*r.

2K2

@ Since R differs by T' by a boundary term By, the equations

of TEGR are equivalent to the Einstein’s field equations.
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gravity - Symmetric Teleparallel equivalent of GR

o Symmetric Teleparallel equivalent of GR (STEGR) assumes
zero curvature and zero torsion so that
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ity of gravity - Symmetric Teleparallel equivalent of GR
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Ricci scalar TEGR
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Trinity of gravity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - Symmetric Teleparallel equivalent of GR

o Symmetric Teleparallel equivalent of GR (STEGR) assumes
zero curvature and zero torsion so that

Ricci scalar TEGR

R=0= R+ (T +294/=717,7)) + (Q+ V,uQ™\ = V.Qu") +£,

— R=-Q-V, Q)" +V,Q", =-Q+ Bg.

@ Then, STEGR is constructed from the nonmetricity scalar @

1
SSTEGR:/ [—2—,{2Q+Lm] \/—gd4a:.
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Trinity of gravity

ity of gravity - Symmetric Teleparallel equivalent of GR

o Symmetric Teleparallel equivalent of GR (STEGR) assumes
zero curvature and zero torsion so that

Ricci scalar TEGR

R=0=R+ (T +204s=5T7,7")) + (Q+ V,Q", - V. Q" ) +£,

— R=-Q-V,Q,""+V,Q", =-Q+ Bg.

@ Then, STEGR is constructed from the nonmetricity scalar @

1
SSTEGR:/ [—MQ+Lm] V—gd‘z.

@ Since R differs by by a boundary term B, the equations
of STEGR are equivalent to the Einstein’s field
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TEGR in flat spacetime STEGR

—oiy [diz/—gT ° o o o ° —L [dizy=g()
5t J g T+2V, T =Q+ V,(Q" — Q") 7 ©

Geometrical trinity of gravity (S. Bahamonde et.al., “Teleparallel Gravity: From Theory
to Cosmology,” [arXiv:2106.13793 [gr-qc]].)
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@ Gauge formalism
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Metric-Affine gravity

> formalism of Poincaré gauge gravity

@ Poincaré gauge gravity assumes zero nonmetricity
Qo = Vaguw = 0 and a manifold with curvature and torsion.
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Metric-Affine gravity

formalism of Poincaré gauge gravity

@ Poincaré gauge gravity assumes zero nonmetricity
Qo = Vaguw = 0 and a manifold with curvature and torsion.
@ A gauge approach to gravity arises naturally when the
unitary irreducible representations of relativistic particles
labeled by their spin and mass are linked to the geometry of
the space-time.
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@ Poincaré gauge gravity assumes zero nonmetricity
Qaopr = Vagu = 0 and a manifold with curvature and torsion.

@ A gauge approach to gravity arises naturally when the
unitary irreducible representations of relativistic particles
labeled by their spin and mass are linked to the geometry of
the space-time.

@ Then, a gauge connection of the Poincaré group 150(1, 3)
can be introduced to describe the gravitational field as a
gauge field of the external rotations and translations.
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formalism of Poincaré gauge gravity

@ Poincaré gauge gravity assumes zero nonmetricity
Qo = Vaguw = 0 and a manifold with curvature and torsion.

@ A gauge approach to gravity arises naturally when the
unitary irreducible representations of relativistic particles
labeled by their spin and mass are linked to the geometry of
the space-time.

@ Then, a gauge connection of the Poincaré group 150(1, 3)
can be introduced to describe the gravitational field as a
gauge field of the external rotations and translations.

@ Not only an energy-momentum tensor of matter arises, but
also a nontrivial spin density tensor which operates as
source of torsion
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formalism of Poincaré gauge gravity

@ Poincaré gauge gravity assumes zero nonmetricity
Qo = Vaguw = 0 and a manifold with curvature and torsion.

@ A gauge approach to gravity arises naturally when the
unitary irreducible representations of relativistic particles
labeled by their spin and mass are linked to the geometry of
the space-time.

@ Then, a gauge connection of the Poincaré group 150(1, 3)
can be introduced to describe the gravitational field as a
gauge field of the external rotations and translations.

@ Not only an energy-momentum tensor of matter arises, but
also a nontrivial spin density tensor which operates as
source of torsion
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MAG models with dynamical torsion and nonmetricity

ormalism of Poincaré gauge gravity

@ Poincaré gauge gravity assumes zero nonmetricity
Qo = Vaguw = 0 and a manifold with curvature and torsion.

@ A gauge approach to gravity arises naturally when the
unitary irreducible representations of relativistic particles
labeled by their spin and mass are linked to the geometry of
the space-time.

@ Then, a gauge connection of the Poincaré group 150(1, 3)
can be introduced to describe the gravitational field as a
gauge field of the external rotations and translations.

@ Not only an energy-momentum tensor of matter arises, but
also a nontrivial spin density tensor which operates as
source of torsion—> an extended correspondence between
the geometry of the space-time and the properties of matter.
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Metric-Affine gravity

> formalism of metric-affine geometry

@ The general case does not assume anything so one has a
manifold with curvature, torsion and nonmetricity.
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Metric-Affine gravity

formalism of metric-affine geometry

@ The general case does not assume anything so one has a
manifold with curvature, torsion and nonmetricity.

o Affine group A(4,R) = R* ® GL(4, R) is the semiproduct of
the translation group R* and the general linear group
GL(4, R). gauge connection with an independent local metric
structure’:

Ay = 8 A g Iy i (9)

Juv = e’ ,ueb vab - (1 0)
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Metric-Affine gravity

formalism of metric-affine geometry

@ The general case does not assume anything so one has a
manifold with curvature, torsion and nonmetricity.

o Affine group A(4,R) = R* ® GL(4, R) is the semiproduct of
the translation group R* and the general linear group
GL(4, R). gauge connection with an independent local metric

structure’:
Ay = 8 A g Iy i (9)
G = €% €’ Ty - (10)
@ Generators of the group A(4,R):
[Fa, P =0, (11)
(Lo’ P =i Py, (12)
[La® Lo®] =i (8P La? = 8,2 L") . (13)
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Metric-Affine gravity

> formalism of metric-affine geometry

@ it is possible to obtain the following gauge curvatures from
the anholonomic metric, coframe and connection:

Gab,u = 8ugab — Yac w bu — Gbe w* ap » (14)
F“W:(")Me“,,fﬁyeau+w“buebyfw“byebﬂ, (15)

Fab,ul/:auwablz_auwabp,+wacuwcbu_Wacuwcb,u' (16)
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Metric-Affine gravity

> formalism of metric-affine geometry

@ it is possible to obtain the following gauge curvatures from
the anholonomic metric, coframe and connection:

Gab,u = 8ugab — Yac w bu — Gbe w* ap » (14)
F“W:(")Me“,,fﬁyeau+w“buebyfw“byebﬂ, (15)

Fab,ul/:auwablz_auwabp,+wacuwcbu_Wacuwcb,u' (16)

@ Correspondence with the curvature, torsion and nonmetricity

tensors:
Gab,u = gacgbded\edp@,u)\p? (1 7)
F 2 e’ /\T)\ VL (1 8)
F® buv — Gbe e’ /\ech)\ puY - (1 9)

Sebastian Bahamonde



Metric-Affine gravity

o

@ Dynamics
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Metric-Affine gravity

iIcs of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

S = / d*z/—g [,cm — 16%59(7%, T,9)] . (20)
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Metric-Affine gravity

iIcs of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

S— / = [,cm _ %59(7%, 7.9)| . (20)
m
@ Correspondence between geometry and matter:
05 1676, ", (21)
oe?,
%5 _ 16mA, % . (22)
dw® bv

Here 6, " is the energy-momentum tensor (canonical) and
A, % is the hypermomentum density tensor.
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h dynamical torsion and

ics of metric- afflne geometry
@ Gravitational action with dynamical torsion and nonmetricity:
5= [dovg|tn- LR TQ] . (@0

@ Correspondence between geometry and matter:
0S5,

16760, ", (21)
oe?,
05  _ 1670 . (22)
dw® bv

Here 60,7 is the energy-momentum tensor (canonical) and
A, % is the hypermomentum density tensor.

@ GL(4, R) group allows the definition of a large number of
scalar invariants depending on the aforementioned tensors.
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Metric-Affine gravity

iIcs of metric-affine geometry

o General quadratic gravitational action with dynamical torsion
and nonmetricity:

5= [dav=g {z:m b o [R4 @1 B2+ @B B s R B
+ aa R pu R*™ ™ + a5 Rppn RN + ag Rapuw B*?Y + a7 Rpau R
+ agRWRW + agRWRW I CL10RWRW I aanR”“ ol a12RWRW
Sl a131~%WRW Sl a14ﬁé/\ )\;WRP o+ 61151%A AWRW i alGR)\ A/,WRW’
+ 01T T + b Ta T + 03T 0T 7 + a1 T QY
+ T 5, Q" ut+ esT™ 2, QM maE deAWQ/\W + d2QAWQW\U

+ds@ 0@ Y +daQu  AQ 4 ds@ 0@ ] } (23)
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MAG models with dynamical torsion and nonmetricity

odels with dynamical torsion and nonmetricity

@ In order to have a theory such that when 7" = @ = 0 one
recovers GR, one can relate the constants.

28. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
38. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to be published in JCAP.
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odels with dynamical torsion and nonmetricity

@ In order to have a theory such that when 7" = @ = 0 one
recovers GR, one can relate the constants.

@ Quadratic gravitational action with dynamical torsion and
nonmetricity in Weyl-Cartan geometry (Q . = 9, W))

S = /d xf Lo + @[—43—6@&”%,}@@“”1

pv

1 - -
— 9d1 R R*P + 8 dy Ry R + + g (3261 +8e> + 17d1) R\ R,

— T Ry B 3™ + 3 (1 = 2a2) Ty T}

28. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
38. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to be published in JCAP.
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odels with dynamical torsion and nonmetricity

@ In order to have a theory such that when 7" = @ = 0 one
recovers GR, one can relate the constants.

@ Quadratic gravitational action with dynamical torsion and
nonmetricity in Weyl-Cartan geometry (Q . = 9, W))

S = / d*zv/=g{Lm + % [ - 4R — 6d1 B ) BN
— 9d1 Rappuy R*?) + 8 dy Ry RY + % (32e1 + 8es + 17dy) R 5, B , ™
— Td1 Ry R A ™ + 3 (1 — 2a2) T[)\W]T[A‘“’]] } }
@ Absence of a general Birkhoff’s theorem in MAG: new

spherically and axially symmetric vacuum solutions with
independent dynamical torsion and nonmetricity fields?-3.

28. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
38. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to be published in JCAP.
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@ Spherical symmetry
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ical symmetry

@ Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 + #8 + #2 = #12):

Egguy = ﬁgTAW, = ﬁgWu =0 = [{R)\MW =0
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MAG models with dynamical torsion and nonmetricity

@ Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 + #8 + #2 = #12):
[,gguy = ﬁgTAW, = ﬁgWu =0 = [{R)\MW =0
@ By solving these equations we find that torsion and
nonmetricity behave as
T =a(r), T 4 =b(r), T% w0, = f(r), T ro, = g(1)
T% 0, = er b 0, €ab A1), T% o, = e®r b 0, €ab () ,
T 0.9, = €t k(r) sin@y, T g9, = e l(r) sindy,
Wy = (wi(r),ws(r),0,0) ,
whereas the metric is in the standard spherically symmetric form:
d7.2
Wa(r)

Here, ¢;; is the Levi-Civita symbol in two dimensions.
Sebastian Bahamonde

ds® = Wy (r) dt? — — 72 (d63 + sin® 6,d63) .



MAG models with dynamical torsion and nonmetricity

cal symmetry - Solving the field equations

The field egs are very involved. To solve them we use the
following strategy:

@ Imposing regularity: In general, the solutions can have a
singular behaviour. To ensure regularity, one can analyse the
torsion/nonmetricity tensors referred to the rotated basis
9% = A% el
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singular behaviour. To ensure regularity, one can analyse the
torsion/nonmetricity tensors referred to the rotated basis
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cal symmetry - Solving the field equations

The field egs are very involved. To solve them we use the
following strategy:

@ Imposing regularity: In general, the solutions can have a
singular behaviour. To ensure regularity, one can analyse the
torsion/nonmetricity tensors referred to the rotated basis
9% = A% el
One can write the gauge curvature F@;, = 9%y #9.VT> o
related to the torsion/nonmetricity tensor in this orthogonal
coframe.
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al symmetry - Solving the field equations

The field egs are very involved. To solve them we use the
following strategy:

@ Imposing regularity: In general, the solutions can have a
singular behaviour. To ensure regularity, one can analyse the
torsion/nonmetricity tensors referred to the rotated basis
9% = A% el
One can write the gauge curvature F@;, = 9%y #9.VT> o
related to the torsion/nonmetricity tensor in this orthogonal

coframe.
Regularity restricts the initial arbitrariness of the torsion
components and the Weyl vector by imposing the relations

b(r) = a(r) V¥1(r)¥a(r),  f(r) =—g(r) v ¥i(r)¥s(r),
d(r) = = h(r) VU1(r)¥a(r), U(r) = k(r) V¥1(r)¥a(r),

wi(r) = —wa(r)/ Vi (r)Wa(r).



MAG models with dynamical torsion and nonmetricity

iIcal symmetry - Solving the field equations

Q Solve the weak field limit: The weak field limit of the field
equations become

VAT 4+ V,VPTA 1\ — V,V, T, =0,
VR \ M =0.
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Q Solve the weak field limit: The weak field limit of the field
equations become

VAT 4+ V,VPTA 1\ — V,V, T, =0,
VR \ M =0.
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cal symmetry - Solving the field equations

Q Solve the weak field limit: The weak field limit of the field
equations become

VAT 4+ V,VPTA 1\ — V,V, T, =0,
VR \ M =0.

These equations can be solved, yielding

/ q)lT‘
= — K{
\1127"

b(r) = )+ F(r) +

Uy (r)
Wy(r)’

where k.4 is an integration constant which represents the
dilaton charge.
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iIcal symmetry - Solving the field equations

@ The final solution for the metric behaves as
Reissner-Nordstréom

g =—1/grr =V(r) =1- —+
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MAG models with dynamical torsion and nonmetricity

iIcal symmetry - Solving the field equations

@ The final solution for the metric behaves as
Reissner-Nordstréom

om dmg — 4e1 K2
gt = — l/g’/‘r = \II(T) =1- 7 == 2 de (24)
©Q Nonmetricity sector:
W, = 242 (1, 1/%(r),0,0) . (25)
.
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iIcal symmetry - Solving the field equations

@ The final solution for the metric behaves as
Reissner-Nordstréom

gt =—1/gr =V(r) =1~ o + 2 (24)
©Q Nonmetricity sector:
W, = 22 (1, - 1/9(r),0,0) . (25)
.
© Torsion sector:
S =-"5(1,1,0,0), (26)
T
0 0 O 0O 0 0 2
e _Ks [ 0O 0 0 000 2
T2_3r001 0010 (27)
0O -1 0 -1 0 0 O
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tion and spin charges

What do «, (dilation charge) and x4 . (spin charge) physically
represent?

Point 1 - Hypermomentum density

In the geometric scheme of MAG, not only an
energy-momentum tensor of matter arises as source of
curvature, but also a hypermomentum density tensor which
operates as source of torsion and nonmetricity.
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ation and spin charges

What do «, (dilation charge) and x4 . (spin charge) physically
represent?

Point 1 - Hypermomentum density

In the geometric scheme of MAG, not only an
energy-momentum tensor of matter arises as source of
curvature, but also a hypermomentum density tensor which
operates as source of torsion and nonmetricity.

Point 2 - Dilation and spin charges

In Weyl-Cartan geometry, hypermomentum density tensor
splits into spin and dilation currents, which carry their own
charges and provide a RN solution.
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tion and spin charges

When these charges might be important?

Significant effects are contemplated only around extreme
gravitational systems, such as neutron stars with intense
magnetic fields and sufficiently oriented elementary spins or
black holes endowed with spin and dilation charges.

Sebastian Bahamonde



MAG models with dynamical torsion and nonmetricity

ation and spin charges

When these charges might be important?

Significant effects are contemplated only around extreme
gravitational systems, such as neutron stars with intense
magnetic fields and sufficiently oriented elementary spins or
black holes endowed with spin and dilation charges.

Quantum nature

The intrinsic hypermomentum of matter is purely quantum
since in its vanishes in the rest of ordinary matter sources (e.g.
Dirac fermions).

\
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@ Observational constraints
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> of the black hole solution

@ The nature of the horizons depends on the difference
dik2 — 4eq117. Thus, a positive difference of this quantity
would present two horizons determined from the roots

re=M+A, A?2=M?-— (dmg —4elﬁ§) ,

with 0 < (dix% — 4e1k3) < M2,
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of the black hole solution

@ The nature of the horizons depends on the difference
dik2 — 4eq117. Thus, a positive difference of this quantity
would present two horizons determined from the roots

ry = M+ Aq, A2:M2—(dln§—4em§) ,

with 0 < (dix% — 4e1k3) < M2,

@ The different signs of the kinetic terms related to the
dynamical part of torsion and to the Weyl vector allows the
case dx2 — 4de1k3 < 0.

Sebastian Bahamonde
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MAG models with dynamical torsion and nonmetricity

of the black hole solution

@ The nature of the horizons depends on the difference
dik2 — 4eq117. Thus, a positive difference of this quantity
would present two horizons determined from the roots

ry = M+ Aq, A2:M2—(d1/i§—4elﬁ?l) ,

with 0 < (dix% — 4e1k3) < M2,
@ The different signs of the kinetic terms related to the

dynamical part of torsion and to the Weyl vector allows the
case dx2 — 4de1k3 < 0.

@ The balance between x4 and «, is not restricted to any
special constraint and therefore any of these situations may
occur in the presence of torsion and nonmetricity.
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e motion in MAG

@ The equations of motion of test bodies with microstructure
coupled to the torsion and nonmetricity tensors become*

pt 4+ TH ,\pp’\up + N PPyt + R,\pa“ APy = 0.

4D. Puetzfeld and Y. N. Obukhov, Phys. Rev. D 76 (2007), 084025.
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e motion in MAG

@ The equations of motion of test bodies with microstructure
coupled to the torsion and nonmetricity tensors become*

pt +TH AppAup + N[,\p] “p”u)‘ + RAW“ APy = 0.

@ This eq. reduces to the standard geodesic one
(p* +I'* 5, p*u” = 0) when the hypermomentum of the test
body vanishes and also when the particle are bosons.

4D. Puetzfeld and Y. N. Obukhov, Phys. Rev. D 76 (2007), 084025.
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> motion in MAG

@ The equations of motion of test bodies with microstructure
coupled to the torsion and nonmetricity tensors become*

pt 4+ TH ,\pp’\up + N PPyt + R,\pg“ APy = 0.

@ This eq. reduces to the standard geodesic one
(p* +I'* 5, p*u” = 0) when the hypermomentum of the test
body vanishes and also when the particle are bosons.

@ Using the standard geodesic approach, we find

24+ V(r)=0, V(r)=- 102E2 + 1\If(v) i2 +oc?
) - T2 2 72 ’

where E an J are the conserved charges and o = 0(c = 1)
represents massless(massive) particles.
4D. Puetzfeld and Y. N. Obukhov, Phys. Rev. D 76 (2007), 084025.
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sphere and perihelion shift

@ Photon sphere: Region of space where gravity is so strong
that photons are forced to travel in orbits. They are found by
setting V'(r) = V(r) = o = 0, giving us:

e! GE(As + 3M)2
rmn=-—=BM+Ay), Ji= \[c\/A2+3M2+4A2]W’

2¢2
G GE(As — 3M

= (BM —A;), Jox=+% 2( 2 r :
2c V2e\/AZ +3M? — 4A, M

r2 =

where we have defined
AZ:= M? +8A2 =9M?% — % (dmi = 4emfl).
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sphere and perihelion shift

@ Photon sphere: Region of space where gravity is so strong
that photons are forced to travel in orbits. They are found by
setting V'(r) = V(r) = o = 0, giving us:

G GE(Az +3M)?
rmn=-—=BM+Ay), Ji= \[c\/Az T INE T AR

2c?
e GE(Ag — 3M)?

r 3M — As), Jop ==
2= 50 I I /N EE T e

where we have defined
A% = M? 4+ 8AF = 9M? — & (d1k? — de153).

o The first pair (r1, J1,+) describes a unique photon sphere that
lies outside the event horizons, with the corrections related to
ks, kq affecting its location with respect to the Schwarzschild
solution of GR.
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sphere and perihelion shift

@ Perihelion shift: We consider a massive body with o = 1
and a perturbation around its closed orbit .
(re =V (re) =V'(re) =0):

3GM  27G?M? 135G3M3  2835G*M*

c2re 2ctr2 2c573 8c8rd

—dl{2 ;4_& +6H2 L+24G>
1%s 2¢2Mr.  cAr2 184 Mc2r.  cAr2 ’

A¢>:27r|:
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sphere and perihelion shift

@ Perihelion shift: We consider a massive body with o = 1
and a perturbation around its closed orbit 7.
(re =V (re) =V'(re) =0):

3GM  27G?M?  135G3M3 = 2835G*M*
c2re 2ctr2 2c573 8c8rd

g (L 6GY a2 +24G>
1%s 2¢2Mr.  cAr2 184 Mc2r.  cAr2 ’

@ One could expect that these contributions coming from
metric-affine geometry will be only sourced in a strong
gravitational regime, e.g., Sgr A* and S2 stars.

A¢>:27r|:
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sphere and perihelion shift

@ Perihelion shift: We consider a massive body with o = 1
and a perturbation around its closed orbit 7.
(re =V (re) =V'(re) =0):

3GM 27G2M?  135G3M3  2835G*M*
2c¢4r2 2c573 8c8rd

g (L 6GY a2 +24G>
1%s 2¢2Mr.  cAr2 184 Mc2r.  cAr2 ’

@ One could expect that these contributions coming from
metric-affine geometry will be only sourced in a strong
gravitational regime, e.g., Sgr A* and S2 stars.

@ Since Agéé(;’R) ~ 48.550 " /year| and
Aqﬁ(‘)bs — 48.506 fsp [ /year]® we find the constrain

de1k3 —5.711-10% [J - m] < dyw? < deyk? +2.894-10% [T -m] .

A¢ =21
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ational redshift

@ Another gravitational effect that can be used to constrain the
new effects arising from our model is the gravitational
redshift, that for our solution we get

GM 3G*M? N 5G3 M3 N 35GA M1 N G (4e1k3 — d1k2)
2R 2c* R? 2c5 R3 8c8 R4 2c* R?

z =
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@ Another gravitational effect that can be used to constrain the
new effects arising from our model is the gravitational
redshift, that for our solution we get

GM 3G*M? N 5G3 M3 N 35GA M1 N G (4e1k3 — d1k2)
2R 2c¢*R? 2c¢5 R3 8c3 R4 2c* R2
@ We can now consider astrophysical compact objects, such as

degenerate stars composed by fermionic matter with a spin
alignment induced by torsion.

z =
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@ Another gravitational effect that can be used to constrain the
new effects arising from our model is the gravitational
redshift, that for our solution we get

GM  3G2M?*  5GM3  35G*M* G (4e1x] — diK3)

2R * 2c¢*R? * 2c¢5 R3 + 8c3 R4 * 2c* R2

@ We can now consider astrophysical compact objects, such as
degenerate stars composed by fermionic matter with a spin
alignment induced by torsion.

@ Current measurements for the masses and gravitational
redshifts of isolated neutron stars do not provide
independent quantities.
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@ Another gravitational effect that can be used to constrain the
new effects arising from our model is the gravitational
redshift, that for our solution we get

GM 3G*M? N 5G3 M3 N 35GA M1 N G (4e1k3 — d1k2)
2R 2c¢*R? 2c¢5 R3 8c3 R4 2c* R2

We can now consider astrophysical compact objects, such as
degenerate stars composed by fermionic matter with a spin
alignment induced by torsion.

Current measurements for the masses and gravitational
redshifts of isolated neutron stars do not provide
independent quantities.

We focused on the Sirius B white dwarf which gives us

4er1k? —2.931-10% [J - m] < dyx? < de1k? +1.016- 103 [T -m] .

z =
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o Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.
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@ Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.

@ Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, x siriusB > Kd,SiriusB-
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ational constrains

@ Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.

@ Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, x siriusB > K SiriusB-

@ Perihelion shift+ Gravitational redshift: Assuming the
same approximation in Sgr A* and considering the
universality of the coupling constant d;, we find®

Ks,SgrAx

1.396 - 1010 < < 1.688-10'0.

R s, SiriusB
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ational constrains

@ Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.

@ Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, x siriusB > K SiriusB-

@ Perihelion shift+ Gravitational redshift: Assuming the
same approximation in Sgr A* and considering the
universality of the coupling constant d;, we find®

Ks,SgrAx

R s, SiriusB

@ To the best of our knowledge, this bound provides the first
observational comparison between the spin charges of a

WIe and a degenerate star.

S Bahamonde and J. Gigante Valcarcel, Eur. Phys. J. C 81 (2021) no.6, 495.
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Sion to axisymmetric space-times

@ Metric, torsion and nonmetricity tensors in symmetric
space-times:

Leguy = LTy = LeQ 1y =0 = LeR 0, =0, (28)

’S. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to appear in JCAP.
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lon to axisymmetric space-times

@ Metric, torsion and nonmetricity tensors in symmetric
space-times:

Leguy = LTy = LeQ 1y =0 = LeR 0, =0, (28)
o Stationary and axisymmetric space-times’:

ds? = Wy (r,9) dt? — go—

2(r,9) .
#lO= r2W3(r, ) {dﬁQ + sin2 9(dp — Uy(r,9)dt)?|
494 {T’\ =T 1 (r, ) (29)
"y {W# = (Wi(r, ), W (r,9), Wy (r, 9), W (r, 0)) . (30)

’S. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to appear in JCAP.
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Sion to axisymmetric space-times
@ Rotating Kerr-Newman metric structure:

2 + a? cos® ¥ dr?
(r2 4 a2 cos2 9) U(r,) + a2 sin? 9
— (r* + a® cos® ¥) d¥* + 2a (1 — U(r,¥)) sin® 9 dtdyp
—sin® ¢ {r2 +a’+a® (1—9(r,9)) sin? 19} do?, (31)

ds® = W(r,9) dt* —

2mr + de1 (k3 o + K3 m) — d1K3]
72 + a2 cos2 ¥

U(r,9)=1-— [
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Sion to axisymmetric space-times

@ Rotating Kerr-Newman metric structure:
2 + a? cos® ¥ 2

d 2 = \If 'l9 dt2 - d
s (r,9) (r2 4 a2 cos2 9) U(r,) + a2 sin? 9 "

— (r* + a® cos® ¥) d¥* + 2a (1 — U(r,¥)) sin® 9 dtdyp

—sin® 9 {r2 +a® +d® (1 — U(r,0))sin’ ] dp®, (31)
[2mr + 4e1 (K3 o + K3 m) — d1K2]
o ] ] ) )
¥(r9) =1 r2 + a? cos? ¥ (32)
o Field strength tensors:

_ 1 o 1_ .
R[Mu] = Es/\ o'y.uvAS + *V)\t)\ n oy R)\ Apv = 4V[VW,U,]

=5 1
R™ (e = 6
1
18

Sebastian Bahamonde
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€Ad[ﬂvv 57 Jrv[u pv] +45 wop & ]S
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nsion to axisymmetric space-times -
-Newmann de-Sitter
@ Nonmetricity sector:

Kd,e” — G Kd,m COS ¥

w1 (7“, 19) = = ¥ Pl b , w3 (Tv 19) = 07
wa(r,9) = — o
IR (r2 + a2 cos2 9) U (r,9) + a2sin? I’
r? + a? Kd,eT sin? 9
wa(r,9) = Kam (ﬁ cos ) = 7) T ooty O

Sebastian Bahamonde



MAG models with dynamical torsion and nonmetricity

nsion to axisymmetric space-times -
Newmann de-Sitter
@ Nonmetricity sector:

Kd,e” — G Kd,m COS ¥

wi(r,¥) = T Zcos?d ws(r,9) =0,
w2(7", 19) = - e 2 9
(r2 4+ a2 cos?2 9)¥(r,9) + a?sin® ¢
r? +a? Kd,eT sin? 9
wa(r,9) = Kam (ﬁ cosv) = 7) R
@ Torsion sector (decoupling limit between the spin and the
orbital angular momentum |aks| < 1):
SR %(1, 1,0,0) + O(ars) , (35)

0 0 0 0
’abciﬁ 0 0 0 0
T2 “ 3|l 0 0 1 0

0 -1 0 -1
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ational spin-orbit interaction

@ We found a solution in the decoupling limit axs < 1, which
ensures that the Maxwell equation and closure conditions
are fulfilled by the field strength tensors of torsion

_ - ) i
VaR ) = VuR¥ =0, Vi Ry = VinRjuy = 0.
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are fulfilled by the field strength tensors of torsion

i, ~ o : )
VaR ) = VuRM =0, VRypu) = VinRjuy =0.
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vitational spin-orbit interaction

@ We found a solution in the decoupling limit axs < 1, which
ensures that the Maxwell equation and closure conditions
are fulfilled by the field strength tensors of torsion

VaR ) = VuRM =0, VRypu) = VinRjuy =0.

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry
of the space-time —> Additional modifications provided by a
strong coupling between the orbital and the spin angular.

o Gravitational spin-orbit interaction:
. 1 oV d1 agtt
s = rarar 9% g e O
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MAG models with dynamical torsion and nonmetricity

to axisymmetric space-times - Plebanski-Damianski

@ It is well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains:

Mass M

Angular momentum |a

Taub-NUT charge

—

Acceleration «
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@ It is well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains:
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@ Further, one can add a cosmological constant A and a
electric charge ¢. and magnetic charge g,.
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to axisymmetric space-times - Plebanski-Damianski

@ It is well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains:

Mass M

Angular momentum |a

Taub-NUT charge

—

Acceleration «

@ Further, one can add a cosmological constant A and a
electric charge ¢. and magnetic charge g,.

@ The solution in GR is called Plebanski-Damianski solution.
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to axisymmetric space-times - Plebanski-Damianski

@ The Plebanski-Damianski metric that can be written as

. L, - 2 _dr?
ds? = O (nﬁ){@l(r,ﬂ)[dt (asin® 9 + 2I(x — cos 1)) dy] &, (r, )

— LﬁQ — Oy(r, ) sin219[adt — (7“2 +a? +1%2+ 2xal) dSD]Q} .
(I)Q(T7’l9) ’

where ®;, Q) are cumbersome functions depending on these
parameters.
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to axisymmetric space-times - Plebanski-Damianski

@ The Plebanski-Damianski metric that can be written as

2
ds® = Q7 %(r, 19){@1(7“, 9) [dt — (asin2 ¥+ 2l(x — cos?)) dgo}2 = <I>Cé77:19)
1\
— LﬁQ — Oy(r, ) sin219[adt — (7‘2 +a? +1%2+ 2xal) dSD]Q}
®s(r, ) 7 |

where ®,, ) are cumbersome functions depending on these
parameters.

@ We are now finishing a paper where we found this solution in
our model with an additional torsion and nonmetricity term
coming from the dilaton and spin charges (in the decoupling
limit |z;k5| < 1 with the three parameters =z = (a, [, @)).
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sions - Messages to home

o GR assumes different assumptions and there are some good
indications that GR should not be the final theory of gravity
—> modified gravity?
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sions - Messages to home

o GR assumes different assumptions and there are some good
indications that GR should not be the final theory of gravity
—> modified gravity?

@ There are different ways of modifying GR, here | presented
one block regarding modifying the geometry to be different to
Riemannian geometry.

@ The geometrical quantities that appear have their own
geometrical meaning. In general, one can have an
independent metric and affine connection.

@ There are three alternative ways of representing gravity as
GR and they are indistinguishable at the classical level (GR,
TEGR, STEGR).

@ The MAG are gauge theories of gravity with the field strength
tensors given by the curvature, torsion and nonmetricity.
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@ In the 1st paper we found an exact black hole solution in a
MAG theory with torsion and nonmetricity being dynamical
and independent.
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MAG models with dynamical torsion and nonmetricity

@ In the 1st paper we found an exact black hole solution in a
MAG theory with torsion and nonmetricity being dynamical
and independent.

@ In the 2nd paper, we studied the phenomenology of particle
and provided observational constrains for the charges.

@ In the 3rd paper, we obtained an axially symmetric solution
behaving as a Kerr-Newman-de Sitter solution (in the
decoupling limit).

@ In progress: we are constructing Plebanski-Demianski
uniformly accelerated rotating black hole solutions with NUT
parameter, electromagnetic charges and a A.
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In the 1st paper we found an exact black hole solution in a
MAG theory with torsion and nonmetricity being dynamical
and independent.

In the 2nd paper, we studied the phenomenology of particle
and provided observational constrains for the charges.

In the 3rd paper, we obtained an axially symmetric solution
behaving as a Kerr-Newman-de Sitter solution (in the
decoupling limit).

In progress: we are constructing Plebanski-Demianski
uniformly accelerated rotating black hole solutions with NUT
parameter, electromagnetic charges and a A.

Future: search of a gravitational spin-orbit interaction in MAG
beyond the Kerr-Newman space-time (MAG is the main
candidate to describe a spin-orbit interaction beyond GR).
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