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General Relativity - Assumptions

General Relativity is based upon different assumptions that can
be understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

Equivalence principle

General covariance: Invariant under diffeomorphisms and
Local Lorentz transformations.
Riemannian geometry: The connection is the Levi-Civita
one.
4-dimension
2nd order derivatives:gravitational action contains only
second derivatives.
Locality
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Why modified gravity?

GR is not compatible with quantum field theory;

The cosmological constant Λ problem; Dark energy, dark
matter.
The H0 tension: 5σ tension between current expansion rate
H0 using Planck data and direct model-independent
measurements in the local universe;
Big Bang singularity;
What is really the inflaton?
Strong gravity regime needs to be tested;
A good way to understand GR is to modify it;
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Fundamental variables and characteristic tensors
In the most general metric-affine setting, the fundamental
variables are a metric gµν (10 comp.) as well as the
coefficients Γ̃ρ

µν (64 comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) , (1)

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ
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What does curvature geometrically represent?

Curvature tensor R̃α
βµν

Rotation experienced by a vector when it is parallel transported
along a closed curve

1

2

3

4

56

R̂µ
νρσ

1

1′1

1′ T̂µ
νρ

1 2
Q̂µ

νρ
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Some important special cases of metric-affine geometries

Riemann-Cartan geometry (Q̃αµν = 0): If non-metricity
vanishes, the metric satisfies the metric-compatibility
condition ∇̃µgαβ = 0. Poincaré grvity assumes this
geometry.

Weyl gravity (T̃α
µν = 0): If the torsion vanishes, the

connection is called symmetric Γ̃ρ
[µν] = 0.

General Teleparallel geometry (R̃αµνβ = 0): In the case
of vanishing curvature, the connection is flat.
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Some important special cases of metric-affine geometries

Riemannian geometry (T̃α
µν = 0, Q̃αµν = 0): The

connection is symmetric and metric compatible, leading to
Γ̃ρ

µν =
◦
Γρ

µν . GR and the majority of the theories are here.

Torsional Teleparallel geometry (R̃αµνβ = 0, Q̃αµν = 0):
The metric satisfies the metric-compatibility condition but
torsion is non-zero. This talk will be based on this.
Symmetric Teleparallel geometry (R̃αµνβ = 0, T̃α

µν = 0):
Both torsion tensor and curvature are zero and the
gravitational interactions are only mediated through
non-metricity.
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torsion is non-zero. This talk will be based on this.
Symmetric Teleparallel geometry (R̃αµνβ = 0, T̃α

µν = 0):
Both torsion tensor and curvature are zero and the
gravitational interactions are only mediated through
non-metricity.
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Figure: Classification of metric-affine geometries - Cube 14/61
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Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Why modified gravity?
Basic geometrical quantities
Tetrads and spin connection

Geometry and continuum mechanics

In the context of continuum mechanics, the geometric tools
of gravity have been used to describe various effects in
continuum mechanics.

Deformations can be understood as analogous to take a
Minkowski crystal and deform it. They can be associated to
change in the microstructure of crystals.
Curvature: can be understood as disclination (rotational
symmetries are broken)
Torsion: can be understood as dislocations (translation
symmetries are broken) which are crystallographic defects,
or irregularities, in the crystal structure.
Nonmetricity: can be understood as crystalline structure
with point defects (vacancies/intersticials)
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Nonmetricity

Q̂αµν

Torsion

T̂ µνρ

Curvature

Flat (Minkowski)

R̂µ
νρσ

Figure: Crystalline structure and its analogy with curvature, torsion and
non-metricity
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Figure: Crystal dislocations are shown against a regular crystal with no dislocation
(left), and where screw (middle) and edge (right) dislocations are represented.
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Basic geometrical quantities
Tetrads and spin connection

2 Trinity of gravity
Trinity of gravity: GR, TEGR and STEGR.
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Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Why modified gravity?
Basic geometrical quantities
Tetrads and spin connection

Tetrads and the spin connection
An alternative description of the metric-affine geometry
outlined in the preceding section is to use a tetrad eaµ and a
spin connection ω̃a

bµ.

Latin letters a, b = 0, . . . , 3 denote Lorentz indices, while
small Greek letters µ, ν = 0, ..., 3 denote spacetime indices
(where numbers refer to spacetime coordinates on the
respective spaces).
From the tetrad one constructs the Lorentzian metric via the
relation

Metric and tetrads

gµν = ηabe
a
µe

b
ν , gµν = ηabEa

µEb
ν

where ηab = diag(1,−1,−1,−1) denotes the Minkowski
metric.
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Tetrads fields
The vectors (EA) form an orthonormal basis of the tangent
space, i.e.,

g(Ea,Eb) = gµνEa
µEb

ν = ηab . (2)

∂x

∂y

E1

E2

y = const.

x = const.

Figure: Graphical representation of the tetrad, reduced to a 2
dimensional model manifold. A coordinate basis (∂x, ∂y) of the
tangent space is, by definition, tangent to the coordinate lines at a
given base point, but not necessary orthogonal or normalized with a
given metric. In contrast, the tetrad corresponds to an orthonormal
basis (E1,E2) = (E1

µ∂µ, E2
µ∂µ).
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Spin connection and tetrads

The frame coefficients Ea
µ are also required in order to

calculate the coefficients Γ̃µ
νρ of the affine connection from

the spin connection ω̃a
bµ via

Γ̃ρ
µν = Ea

ρ
(
∂νe

a
µ + ω̃a

bνe
b
µ

)
, (3)

This is the unique affine connection satisfying the so-called
“tetrad postulate”

∂µe
a
ν + ω̃a

bµe
b
ν − Γ̃ρ

νµe
a
ρ = 0 . (4)
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Spin connection and tetrads

One advantage of the formulation in terms of a tetrad and
spin connection, is the fact that the curvature, torsion and
non-metricity become properties of the spin connection
only, and are independent of the choice of the tetrad.

Then, we can define the curvature, torsion and
nonmetricity as:

R̃a
bµν := ∂µω̃

a
bν − ∂ν ω̃

a
bµ + ω̃a

cµω̃
c
bν − ω̃a

cνω̃
c
bµ , (5)

T̃ a
µν := ∂µe

a
ν − ∂νe

a
µ + ω̃a

bµe
b
ν − ω̃a

bνe
b
µ , (6)

Q̃µab := −ηacω̃
c
bµ − ηcbω̃

c
aµ . (7)
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Trinity of gravity

As mentioned before, we can split the connection as

Γ̃ρ
µν := Γρ

µν + K̃ρ
µν + L̃ρ

µν := Γρ
µν + D̃ρ

µν , (8)

where

Γµ
νρ =

1

2
gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) , Levi Civita connection

K̃µ
νρ =

1

2

(
T̃ν

µ
ρ + T̃ρ

µ
ν − T̃µ

νρ

)
, Contortion tensor

L̃µ
νρ =

1

2

(
Q̃µ

νρ − Q̃ν
µ
ρ − Q̃ρ

µ
ν

)
, Disformation tensor .
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Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - curvature tensor
The curvature becomes

R̃µ
νρσ = Rµ

νρσ+
◦
∇ρD̃

µ
νσ−

◦
∇σD̃

µ
νρ+D̃µ

τρD̃
τ
νσ−D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci
scalar R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R+
(
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(
Q+∇µQ

µν
ν −∇νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α − 1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .

Sebastian Bahamonde Black Holes in metric-affine



26/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - curvature tensor
The curvature becomes

R̃µ
νρσ = Rµ

νρσ+
◦
∇ρD̃

µ
νσ−

◦
∇σD̃

µ
νρ+D̃µ

τρD̃
τ
νσ−D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci
scalar R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R+
(
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(
Q+∇µQ

µν
ν −∇νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α − 1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .

Sebastian Bahamonde Black Holes in metric-affine



26/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - curvature tensor
The curvature becomes

R̃µ
νρσ = Rµ

νρσ+
◦
∇ρD̃

µ
νσ−

◦
∇σD̃

µ
νρ+D̃µ

τρD̃
τ
νσ−D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci
scalar R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R+
(
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(
Q+∇µQ

µν
ν −∇νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α − 1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .

Sebastian Bahamonde Black Holes in metric-affine



26/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - curvature tensor
The curvature becomes

R̃µ
νρσ = Rµ

νρσ+
◦
∇ρD̃

µ
νσ−

◦
∇σD̃

µ
νρ+D̃µ

τρD̃
τ
νσ−D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci
scalar R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R+
(
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(
Q+∇µQ

µν
ν −∇νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α − 1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .

Sebastian Bahamonde Black Holes in metric-affine



26/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - curvature tensor
The curvature becomes

R̃µ
νρσ = Rµ

νρσ+
◦
∇ρD̃

µ
νσ−

◦
∇σD̃

µ
νρ+D̃µ

τρD̃
τ
νσ−D̃µ

τσD̃
τ
νρ .

Now, by contracting the curvature tensor to obtain the Ricci
scalar R̃ = gµνR̃ρ

µρν we find

Ricci scalar decomposition

R̃ = R+
(
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(
Q+∇µQ

µν
ν −∇νQµ

µν
)
+ C

with

T := T ρλκTρλκ + 2T ρλκTκρλ − 4Tρ
κ
κT

ρλ
λ , Torsion scalar ,

Q := −1

4
QαβγQ

αβγ +
1

2
QαβγQ

βαγ +
1

4
QαQ

α − 1

2
QαQ̄

α , Nonmetricity scalar ,

C := 2(QκρλT
λκρ +Qρ

σ
σT

ρκ
κ −Qσ

σρT
ρκ

κ) .

Sebastian Bahamonde Black Holes in metric-affine



27/61

Introduction to Metric-affine gravity
Trinity of gravity
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Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - General Relativity
GR assumes zero torsion and nonmetricity so that

Ricci scalar GR

R̃ = R+
((((((((((((
T − 2∇µ(

√−gT ρ
ρ
µ)
)
+
(((((((((((((
Q+∇µQ

µν
ν −∇νQµ

µν
)
+�C = R .

Then, GR is constructed from the Ricci scalar

Einstein-Hilbert action

SGR =

∫ [
− 1

2κ2
R+ Lm

]√−g d4x .

where κ2 = 8πG and Lm is any matter Lagrangian.
The Einstein’s field equations are obtained by taking

variations w/r to the metric: Rµν −
1

2
gµν = κ2Tµν .
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Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - Teleparallel equivalent of GR
Teleparallel equivalent of GR (TEGR) assumes zero
curvature and zero nonmetricity so that

Ricci scalar TEGR

R̃ = 0 = R+
(
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(((((((((((((
Q+∇µQ

µν
ν −∇νQµ

µν
)
+�C ,

⇐⇒ R = −T +∇µ(
√−gT ρ

ρ
µ) := −T +BT .

Then, TEGR is constructed from the torsion scalar T

TEGR action

STEGR =

∫ [
− 1

2κ2
T + Lm

]
e d4x .

Since R differs by T by a boundary term BT , the equations
of TEGR are equivalent to the Einstein’s field equations.
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Trinity of gravity: GR, TEGR and STEGR.

Trinity of gravity - Symmetric Teleparallel equivalent of GR
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zero curvature and zero torsion so that

Ricci scalar TEGR
R̃ = 0 = R+

((((((((((((
T + 2∇µ(

√−gT ρ
ρ
µ)
)
+
(
Q+∇µQ

µν
ν −∇νQµ

µν
)
+�C ,

⇐⇒ R = −Q−∇νQµ
µν +∇µQ

µν
ν := −Q+BQ .

Then, STEGR is constructed from the nonmetricity scalar Q

STEGR action

SSTEGR =

∫ [
− 1

2κ2
Q+ Lm

]√−g d4x .

Since R differs by Q by a boundary term BQ, the equations
of STEGR are equivalent to the Einstein’s field
equations.
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Gauge formalism of Poincaré gauge gravity

Poincaré gauge gravity assumes zero nonmetricity
Qαµν = ∇αgµν = 0 and a manifold with curvature and torsion.

A gauge approach to gravity arises naturally when the
unitary irreducible representations of relativistic particles
labeled by their spin and mass are linked to the geometry of
the space-time.
Then, a gauge connection of the Poincaré group ISO(1, 3)
can be introduced to describe the gravitational field as a
gauge field of the external rotations and translations.
Not only an energy-momentum tensor of matter arises, but
also a nontrivial spin density tensor which operates as
source of torsion

=⇒ an extended correspondence between
the geometry of the space-time and the properties of matter.
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Gauge formalism of metric-affine geometry
The general case does not assume anything so one has a
manifold with curvature, torsion and nonmetricity.

Affine group A(4,R) = R4 ⊗GL(4, R) is the semiproduct of
the translation group R4 and the general linear group
GL(4, R). gauge connection with an independent local metric
structure1:

Aµ = ea µPa + ωa
bµLa

b , (9)

gµν = ea µe
b
νηab . (10)

Generators of the group A(4,R):

[Pa, Pb] = 0 , (11)
[
La

b, Pc

]
= i δb c Pa , (12)

[
La

b, Lc
d
]
= i

(
δb c La

d − δa
d Lc

b
)
. (13)

1F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Ne’eman, Phys. Rept. 258, 1 (1995).
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Gauge formalism of metric-affine geometry
it is possible to obtain the following gauge curvatures from
the anholonomic metric, coframe and connection:

Gabµ = ∂µgab − gac ω
c
bµ − gbc ω

c
aµ , (14)

F a
µν = ∂µe

a
ν − ∂νe

a
µ + ωa

bµ e
b
ν − ωa

bν e
b
µ , (15)

F a
bµν = ∂µω

a
bν − ∂νω

a
bµ + ωa

cµ ω
c
b ν − ωa

cν ω
c
bµ . (16)

Correspondence with the curvature, torsion and nonmetricity
tensors:

Gabµ = gacgbde
cλedρQµλρ, (17)

F a
µν = ea λT

λ
νµ , (18)

F a
bµν = gbc e

a
λe

cρR̃λ
ρµν . (19)
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Dynamics of metric-affine geometry
Gravitational action with dynamical torsion and nonmetricity:

S =

∫
d4x

√−g

[
Lm − 1

16π
Lg(R̃, T ,Q)

]
. (20)

Correspondence between geometry and matter:

δSg

δea ν
= 16πθa

ν , (21)

δSg

δωa
bν

= 16π∆a
bν . (22)

Here θa
ν is the energy-momentum tensor (canonical) and

∆a
bν is the hypermomentum density tensor.

GL(4, R) group allows the definition of a large number of
scalar invariants depending on the aforementioned tensors.
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Dynamics of metric-affine geometry
General quadratic gravitational action with dynamical torsion
and nonmetricity:

S =

∫
d4x

√
−g

{
Lm +

1

16π

[
−R̃+ a1R̃

2 + a2R̃λρµνR̃
λρµν + a3R̃λρµνR̃

ρλµν

+ a4R̃λρµνR̃
µνλρ + a5R̃λρµνR̃

λµρν + a6R̃λρµνR̃
µλρν + a7R̃ρλµνR̃

µλρν

+ a8R̃µνR̃
µν + a9R̃µνR̃

νµ + a10R̂µνR̂
µν + a11R̂µνR̂

νµ + a12R̃µνR̂
µν

+ a13R̃µνR̂
νµ + a14R̃

λ
λµνR̃

ρ
ρ
µν + a15R̃

λ
λµνR̃

µν + a16R̃
λ

λµνR̂
µν

+ b1TλµνT
λµν + b2TλµνT

µλν + b3T
λ

λνT
µ

µ
ν + c1TλµνQ

µλν

+ c2T
λ

λνQ
νµ

µ + c3T
λ

λνQ
µν

µ + d1QλµνQ
λµν + d2QλµνQ

µλν

+ d3Q
λ

λνQ
µ

µ
ν + d4Qν

λ
λQ

νµ
µ + d5Q

λ
λνQ

νµ
µ

]}
. (23)
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MAG models with dynamical torsion and nonmetricity

In order to have a theory such that when T = Q = 0 one
recovers GR, one can relate the constants.

Quadratic gravitational action with dynamical torsion and
nonmetricity in Weyl-Cartan geometry (Qλµν = gµνWλ)

S =

∫
d4x

√
−g

{
Lm +

1

64π

[
− 4R− 6d1R̃λ[ρµν]R̃

λ[ρµν]

− 9d1R̃λ[ρµν]R̃
µ[λνρ] + 8 d1R̃[µν]R̃

[µν] +
1

8
(32e1 + 8e2 + 17d1) R̃

λ
λµνR̃

ρ
ρ
µν

− 7d1R̃[µν]R̃
λ

λ
µν + 3 (1− 2a2)T[λµν]T

[λµν]
]}

.

Absence of a general Birkhoff’s theorem in MAG: new
spherically and axially symmetric vacuum solutions with
independent dynamical torsion and nonmetricity fields2,3.

2
S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).

3
S. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to be published in JCAP.
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Spherical symmetry
Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 +#8 +#2 = #12):

Lξgµν = LξT
λ
µν = LξWµ = 0 =⇒ LξR̃λρµν = 0

By solving these equations we find that torsion and
nonmetricity behave as

T t
tr = a(r) , T r

tr = b(r) , T θk
tθk = f(r) , T θk

rθk = g(r)

T θk
tθl = eaθk eb θl ϵab d(r) , T θk

rθl = eaθk eb θl ϵab h(r) ,

T t
θkθl = ϵkl k(r) sin θ1 , T r

θkθl = ϵkl l(r) sin θ1 ,

Wλ = (w1(r), w2(r), 0, 0) ,

whereas the metric is in the standard spherically symmetric form:

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

Here, ϵkl is the Levi-Civita symbol in two dimensions.
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Spherical symmetry - Solving the field equations
The field eqs are very involved. To solve them we use the
following strategy:
1 Imposing regularity: In general, the solutions can have a

singular behaviour. To ensure regularity, one can analyse the
torsion/nonmetricity tensors referred to the rotated basis
ϑa = Λa

be
b.

One can write the gauge curvature Fa
bc = ϑa

λϑb
µϑc

νT λ
νµ

related to the torsion/nonmetricity tensor in this orthogonal
coframe.
Regularity restricts the initial arbitrariness of the torsion
components and the Weyl vector by imposing the relations

b(r) = a(r)
√

Ψ1(r)Ψ2(r) , f(r) = − g(r)
√

Ψ1(r)Ψ2(r) ,

d(r) = −h(r)
√
Ψ1(r)Ψ2(r) , l(r) = k(r)

√
Ψ1(r)Ψ2(r) ,

w1(r) = −w2(r)
√
Ψ1(r)Ψ2(r) .
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Spherical symmetry - Solving the field equations
2 Solve the weak field limit: The weak field limit of the field

equations become

∇ρ∇λT
λρ

µ +∇ρ∇ρT λ
µλ −∇ρ∇µT

λρ
λ = 0 ,

∇µR̃
λ
λ
µν = 0 .

These equations can be solved, yielding

w1(r) = −κd

∫ √
Ψ1(r)

Ψ2(r)

dr

r2
,

b(r) = rf ′(r) + f(r) +
κd
2r

√
Ψ1(r)

Ψ2(r)
,

where κd is an integration constant which represents the
dilaton charge.
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Spherical symmetry - Solving the field equations
1 The final solution for the metric behaves as

Reissner-Nordström

gtt = − 1/grr ≡ Ψ(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d,e

r2
. (24)

2 Nonmetricity sector:

Wµ =
κd,e
r

(1,− 1/Ψ(r), 0, 0) . (25)

3 Torsion sector:

S̄a = − κs
r
(1, 1, 0, 0) , (26)

T̄ abc
2 =

κs
3r




0 0 0 0 0 0 2
0 0 0 0 0 0 2
0 0 1 0 0 1 0
0 − 1 0 − 1 0 0 0


 . (27)
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Dilation and spin charges

What do κs (dilation charge) and κd,e (spin charge) physically
represent?

Point 1 - Hypermomentum density
In the geometric scheme of MAG, not only an
energy-momentum tensor of matter arises as source of
curvature, but also a hypermomentum density tensor which
operates as source of torsion and nonmetricity.

Point 2 - Dilation and spin charges

In Weyl-Cartan geometry, hypermomentum density tensor
splits into spin and dilation currents, which carry their own
charges and provide a RN solution.
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Dilation and spin charges

When these charges might be important?

Significant effects are contemplated only around extreme
gravitational systems, such as neutron stars with intense
magnetic fields and sufficiently oriented elementary spins or
black holes endowed with spin and dilation charges.

Quantum nature
The intrinsic hypermomentum of matter is purely quantum
since in its vanishes in the rest of ordinary matter sources (e.g.
Dirac fermions).
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Nature of the black hole solution

The nature of the horizons depends on the difference
d1κ

2
s − 4e1κ

2
d. Thus, a positive difference of this quantity

would present two horizons determined from the roots

r± = M ±∆1 , ∆2
1 = M2 −

(
d1κ

2
s − 4e1κ

2
d

)
,

with 0 <
(
d1κ

2
s − 4e1κ

2
d

)
< M2.

The different signs of the kinetic terms related to the
dynamical part of torsion and to the Weyl vector allows the
case d1κ

2
s − 4e1κ

2
d < 0.

The balance between κd and κs is not restricted to any
special constraint and therefore any of these situations may
occur in the presence of torsion and nonmetricity.
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Particle motion in MAG

The equations of motion of test bodies with microstructure
coupled to the torsion and nonmetricity tensors become4

ṗµ + Γµ
λρ p

λuρ +N[λρ]
µpρuλ + R̃λρσ

µ △ρλ uσ = 0 .

This eq. reduces to the standard geodesic one
(ṗµ + Γµ

λρ p
λuρ = 0) when the hypermomentum of the test

body vanishes and also when the particle are bosons.
Using the standard geodesic approach, we find

1

2
ṙ2 + V (r) = 0 , V (r) = − 1

2
c2E2 +

1

2
Ψ(r)

(
J2

r2
+ σc2

)
,

where E an J are the conserved charges and σ = 0(σ = 1)

represents massless(massive) particles.

4
D. Puetzfeld and Y. N. Obukhov, Phys. Rev. D 76 (2007), 084025.
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Photon sphere and perihelion shift
Photon sphere: Region of space where gravity is so strong
that photons are forced to travel in orbits. They are found by
setting V ′(r) = V (r) = σ = 0, giving us:

r1 =
G

2c2
(3M +∆2) , J1,± = ± GE(∆2 + 3M)2√

2c
√
∆2

2 + 3M2 + 4∆2M
,

r2 =
G

2c2
(3M −∆2) , J2,± = ± GE(∆2 − 3M)2√

2c
√
∆2

2 + 3M2 − 4∆2M
,

where we have defined
∆2

2 := M2 + 8∆2
1 = 9M2 − 8

G

(
d1κ

2
s − 4e1κ

2
d

)
.

The first pair (r1, J1,±) describes a unique photon sphere that
lies outside the event horizons, with the corrections related to
κs, κd affecting its location with respect to the Schwarzschild
solution of GR.
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Photon sphere and perihelion shift
Perihelion shift: We consider a massive body with σ = 1
and a perturbation around its closed orbit rc
(ṙc = V (rc) = V ′(rc) = 0):

∆ϕ = 2π

[
3GM

c2rc
+

27G2M2

2c4r2c
+

135G3M3

2c6r3c
+

2835G4M4

8c8r4c

− d1κ
2
s

(
1

2c2Mrc
+

6G

c4r2c

)
+ e1κ

2
d

(
2

Mc2rc
+

24G

c4r2c

)]
.

One could expect that these contributions coming from
metric-affine geometry will be only sourced in a strong
gravitational regime, e.g., Sgr A* and S2 stars.
Since ∆ϕ

(GR)
S2

≈ 48.550 [
′′
/year] and

∆ϕ
(obs)
S2

= 48.506fSP [
′′
/year]5 we find the constrain

4e1κ
2
d − 5.711 · 1063 [J ·m] ≤ d1κ

2
s ≤ 4e1κ

2
d + 2.894 · 1063 [J ·m] .

5
R. Abuter et al. [GRAVITY], Astron. Astrophys. 636 (2020), L5

Sebastian Bahamonde Black Holes in metric-affine



50/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Spherical symmetry
Observational constraints
Axial symmetry

Photon sphere and perihelion shift
Perihelion shift: We consider a massive body with σ = 1
and a perturbation around its closed orbit rc
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Gravitational redshift
Another gravitational effect that can be used to constrain the
new effects arising from our model is the gravitational
redshift, that for our solution we get

z =
GM

c2R
+

3G2M2

2c4R2
+

5G3M3

2c6R3
+

35G4M4

8c8R4
+

G
(
4e1κ

2
d − d1κ

2
s

)

2c4R2
.

We can now consider astrophysical compact objects, such as
degenerate stars composed by fermionic matter with a spin
alignment induced by torsion.
Current measurements for the masses and gravitational
redshifts of isolated neutron stars do not provide
independent quantities.
We focused on the Sirius B white dwarf which gives us

4e1κ
2
d − 2.931 · 1043 [J ·m] ≤ d1κ

2
s ≤ 4e1κ

2
d + 1.016 · 1043 [J ·m] .
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Observational constrains
Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.

Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, κs,SiriusB ≫ κd,SiriusB.
Perihelion shift+ Gravitational redshift: Assuming the
same approximation in Sgr A* and considering the
universality of the coupling constant d1, we find6

1.396 · 1010 ≤ κs,SgrA∗
κs,SiriusB

≤ 1.688 · 1010 .

To the best of our knowledge, this bound provides the first
observational comparison between the spin charges of a
supermassive black hole and a degenerate star.

6
S. Bahamonde and J. Gigante Valcarcel, Eur. Phys. J. C 81 (2021) no.6, 495.

Sebastian Bahamonde Black Holes in metric-affine



52/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Spherical symmetry
Observational constraints
Axial symmetry

Observational constrains
Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.
Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, κs,SiriusB ≫ κd,SiriusB.

Perihelion shift+ Gravitational redshift: Assuming the
same approximation in Sgr A* and considering the
universality of the coupling constant d1, we find6

1.396 · 1010 ≤ κs,SgrA∗
κs,SiriusB

≤ 1.688 · 1010 .

To the best of our knowledge, this bound provides the first
observational comparison between the spin charges of a
supermassive black hole and a degenerate star.

6
S. Bahamonde and J. Gigante Valcarcel, Eur. Phys. J. C 81 (2021) no.6, 495.

Sebastian Bahamonde Black Holes in metric-affine



52/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Spherical symmetry
Observational constraints
Axial symmetry

Observational constrains
Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.
Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, κs,SiriusB ≫ κd,SiriusB.
Perihelion shift+ Gravitational redshift: Assuming the
same approximation in Sgr A* and considering the
universality of the coupling constant d1, we find6

1.396 · 1010 ≤ κs,SgrA∗
κs,SiriusB

≤ 1.688 · 1010 .

To the best of our knowledge, this bound provides the first
observational comparison between the spin charges of a
supermassive black hole and a degenerate star.

6
S. Bahamonde and J. Gigante Valcarcel, Eur. Phys. J. C 81 (2021) no.6, 495.

Sebastian Bahamonde Black Holes in metric-affine



52/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Spherical symmetry
Observational constraints
Axial symmetry

Observational constrains
Let us now consider the case where the effect of torsion
dominates over the contribution of nonmetricity.
Indeed, due to the presence of a magnetic field in white
dwarfs, it is expected that Sirius B can have sufficiently
oriented elementary spins in comparison with an effective
dilation charge, therefore, κs,SiriusB ≫ κd,SiriusB.
Perihelion shift+ Gravitational redshift: Assuming the
same approximation in Sgr A* and considering the
universality of the coupling constant d1, we find6

1.396 · 1010 ≤ κs,SgrA∗
κs,SiriusB

≤ 1.688 · 1010 .

To the best of our knowledge, this bound provides the first
observational comparison between the spin charges of a
supermassive black hole and a degenerate star.
6

S. Bahamonde and J. Gigante Valcarcel, Eur. Phys. J. C 81 (2021) no.6, 495.

Sebastian Bahamonde Black Holes in metric-affine



53/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Spherical symmetry
Observational constraints
Axial symmetry

Outline
1 Introduction to Metric-affine gravity

Why modified gravity?
Basic geometrical quantities
Tetrads and spin connection

2 Trinity of gravity
Trinity of gravity: GR, TEGR and STEGR.

3 Metric-Affine gravity
Gauge formalism
Dynamics

4 MAG models with dynamical torsion and nonmetricity
Spherical symmetry
Observational constraints
Axial symmetry
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Extension to axisymmetric space-times
Metric, torsion and nonmetricity tensors in symmetric
space-times:

Lξgµν = LξT
λ
µν = LξQ

λ
µν = 0 =⇒ LξR̃

λ
ρµν = 0 . (28)

Stationary and axisymmetric space-times7:

#10 → #4





ds2 = Ψ1(r, ϑ) dt
2 − dr2

Ψ2(r,ϑ)

− r2Ψ3(r, ϑ)
[
dϑ2 + sin2 ϑ(dφ−Ψ4(r, ϑ)dt)

2
] ;

#24
{
T λ

µν = T λ
µν(r, ϑ) (29)

#4
{
Wµ = (Wt(r, ϑ),Wr(r, ϑ),Wϑ(r, ϑ),Wφ(r, ϑ)) . (30)

7S. Bahamonde and J. G. Valcarcel, arXiv: 2108.12414, to appear in JCAP.
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Sebastian Bahamonde Black Holes in metric-affine



55/61

Introduction to Metric-affine gravity
Trinity of gravity

Metric-Affine gravity
MAG models with dynamical torsion and nonmetricity

Spherical symmetry
Observational constraints
Axial symmetry

Extension to axisymmetric space-times
Rotating Kerr-Newman metric structure:

ds2 = Ψ(r, ϑ) dt2 − r2 + a2 cos2 ϑ

(r2 + a2 cos2 ϑ)Ψ(r, ϑ) + a2 sin2 ϑ
dr2

−
(
r2 + a2 cos2 ϑ

)
dϑ2 + 2a (1−Ψ(r, ϑ)) sin2 ϑdtdφ

− sin2 ϑ
[
r2 + a2 + a2 (1−Ψ(r, ϑ)) sin2 ϑ

]
dφ2 , (31)

Ψ(r, ϑ) = 1−
[
2mr + 4e1(κ

2
d,e + κ2

d,m)− d1κ
2
s

]
r2 + a2 cos2 ϑ

. (32)

Field strength tensors:

R̄[µν] =
1

12
ελ σµν∇λS̄

σ +
1

2
∇λt̄

λ
µν ; R̃λ

λµν = 4∇[νWµ] ;

R̄λ
[µνρ] =

1

6
ελ σ[ρν∇µ]S̄

σ +∇[µt̄
λ

ρν] +
1

4
ελ ωσ[ρt̊

σ
1 µν]S̄

ω

− 1

18
εσµνρT̊

λ
1 S̄

σ . (33)
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2
s

]
r2 + a2 cos2 ϑ

. (32)

Field strength tensors:

R̄[µν] =
1

12
ελ σµν∇λS̄

σ +
1

2
∇λt̄

λ
µν ; R̃λ

λµν = 4∇[νWµ] ;

R̄λ
[µνρ] =

1

6
ελ σ[ρν∇µ]S̄

σ +∇[µt̄
λ

ρν] +
1

4
ελ ωσ[ρt̊

σ
1 µν]S̄

ω

− 1

18
εσµνρT̊

λ
1 S̄

σ . (33)
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Extension to axisymmetric space-times -
Kerr-Newmann de-Sitter

Nonmetricity sector:

w1(r, ϑ) =
κd,er − a κd,m cosϑ

r2 + a2 cos2 ϑ
, w3(r, ϑ) = 0 ,

w2(r, ϑ) = − κd,er

(r2 + a2 cos2 ϑ)Ψ(r, ϑ) + a2 sin2 ϑ
,

w4(r, ϑ) = κd,m

(
r2 + a2

r2 + a2 cos2 ϑ
cosϑ− γ

)
− a

κd,er sin
2 ϑ

r2 + a2 cos2 ϑ
. (34)

Torsion sector (decoupling limit between the spin and the
orbital angular momentum |aκs| ≪ 1):

S̄a = − κs

r
(1, 1, 0, 0) +O(aκs) , (35)

T̄ abc
2 =

κs

3r


0 0 0 0 0 0 2
0 0 0 0 0 0 2
0 0 1 0 0 1 0
0 − 1 0 − 1 0 0 0

+O(aκs) . (36)
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Gravitational spin-orbit interaction
We found a solution in the decoupling limit aκs ≪ 1, which
ensures that the Maxwell equation and closure conditions
are fulfilled by the field strength tensors of torsion

∇λR̃
λ
[ρµν] = ∇µR̃

[µν] = 0 , ∇[σR̃λ[ρµν]] = ∇[λR̃[µν]] = 0 .

Possible new effects in the decoupling limit
The dynamics of torsion and nonmetricity alters the geometry
of the space-time =⇒ Additional modifications provided by a
strong coupling between the orbital and the spin angular.

Gravitational spin-orbit interaction:

HLS =
1

m2
er

∂V

∂r
L · S ≈ d1

2r

∂gtt
∂r

aκs cosϑ (37)
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Extension to axisymmetric space-times - Plebanski-Damianski

It is well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains:

Mass M

Angular momentum a

Taub-NUT charge l

Acceleration α

Further, one can add a cosmological constant Λ and a
electric charge qe and magnetic charge qm.
The solution in GR is called Plebanski-Damianski solution.
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Extension to axisymmetric space-times - Plebanski-Damianski

The Plebanski-Damianski metric that can be written as

ds2 = Ω−2(r, ϑ)
{
Φ1(r, ϑ)

[
dt−

(
a sin2 ϑ+ 2l(χ− cosϑ)

)
dφ

]2 − dr2

Φ1(r, ϑ)

− dϑ2

Φ2(r, ϑ)
− Φ2(r, ϑ) sin

2 ϑ
[
a dt−

(
r2 + a2 + l2 + 2χal

)
dφ

]2}
.

where Φi,Ω are cumbersome functions depending on these
parameters.

We are now finishing a paper where we found this solution in
our model with an additional torsion and nonmetricity term
coming from the dilaton and spin charges (in the decoupling
limit |xiκs| ≪ 1 with the three parameters x = (a, l, α)).
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Conclusions - Messages to home
GR assumes different assumptions and there are some good
indications that GR should not be the final theory of gravity
=⇒ modified gravity?

There are different ways of modifying GR, here I presented
one block regarding modifying the geometry to be different to
Riemannian geometry.
The geometrical quantities that appear have their own
geometrical meaning. In general, one can have an
independent metric and affine connection.
There are three alternative ways of representing gravity as
GR and they are indistinguishable at the classical level (GR,
TEGR, STEGR).
The MAG are gauge theories of gravity with the field strength
tensors given by the curvature, torsion and nonmetricity.
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Conclusions
In the 1st paper we found an exact black hole solution in a
MAG theory with torsion and nonmetricity being dynamical
and independent.

In the 2nd paper, we studied the phenomenology of particle
and provided observational constrains for the charges.
In the 3rd paper, we obtained an axially symmetric solution
behaving as a Kerr-Newman-de Sitter solution (in the
decoupling limit).
In progress: we are constructing Plebanski-Demianski
uniformly accelerated rotating black hole solutions with NUT
parameter, electromagnetic charges and a Λ.
Future: search of a gravitational spin-orbit interaction in MAG
beyond the Kerr-Newman space-time (MAG is the main
candidate to describe a spin-orbit interaction beyond GR).
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