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Overview of the Talk

1 Introduction to Metric-affine gravity
Why modified gravity?
Basic geometrical quantities

2 Metric-Affine gravity
Curvature, torsion and nonmetricity
Dynamics

3 MAG models with dynamical torsion and nonmetricity
Weyl part of nonmetricity
Axial symmetry in Weyl-Cartan geometry
Spherical symmetry with Shears and Weyl (complete
nonmetricity)
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General Relativity - Assumptions

General Relativity is based upon different assumptions that can be
understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

Equivalence principle

General covariance: Invariant under diffeomorphisms and Local
Lorentz transformations.
Riemannian geometry: The connection is the Levi-Civita one.
4-dimension
2nd order derivatives: gravitational action contains only second
derivatives.
Locality
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Why modified gravity?

GR is not compatible with quantum field theory;

The cosmological constant Λ problem; Dark energy, dark matter.
The H0 tension: 5σ tension between current expansion rate H0

using Planck data and direct model-independent measurements in
the local universe;
Big Bang singularity;
What is really the inflaton?
Strong gravity regime needs to be tested;
A good way to understand GR is to modify it;
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How to modify it?
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Figure: Classification of theories of gravity. (S. Bahamonde et.al., “Teleparallel Gravity: From
Theory to Cosmology,” [arXiv:2106.13793 [gr-qc]].)



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.
The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.
The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.
The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.
The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν +

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν)

+

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.
The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν +

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.
The most general connection can be written as

Connection decomposition

Γ̃λ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν +

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν) +

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) ,

Curvature R̃µ
νρσ = ∂ρΓ̃µ

νσ − ∂σΓ̃µ
νρ + Γ̃µ

τρΓ̃τ
νσ − Γ̃µ

τσΓ̃τ
νρ

Torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ

Nonmetricity Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ

Sebastian Bahamonde (*) Black Holes in metric-affine 6 / 42



What does curvature geometrically represent?

Curvature tensor R̃α
βµν

Rotation experienced by a vector when it is parallel transported along
a closed curve

1

2

3

4

56

R̂µ
νρσ

1

1′1

1′ T̂µ
νρ

1 2
Q̂µ

νρ
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What does torsion geometrically represent?

Torsion tensor T̃α
µν

non-closure of the parallelogram formed when two infinitesimal vectors
are parallel transported along each other.

1

2

3

4

56

R̂µ
νρσ

1

1′1

1′ T̂µ
νρ

1 2
Q̂µ

νρ
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What does non-metricity geometrically represent?

Non-metricity tensor Q̃αµν

measures how much the length and angle of vectors change as we
parallel transport them, so in metric spaces the length of vectors is
conserve

1

2

3

4

56

R̂µ
νρσ

1

1′1

1′ T̂µ
νρ

1 2
Q̂µ

νρ
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Some important special cases of metric-affine geometries

Riemann-Cartan geometry (Q̃αµν = 0): If non-metricity vanishes, the
metric satisfies the metric-compatibility condition ∇̃µgαβ = 0. Poincaré
grvity assumes this geometry.

Weyl gravity (T̃α
µν = 0): If the torsion vanishes, the connection is

called symmetric Γ̃ρ
[µν] = 0.

General Teleparallel geometry (R̃αµνβ = 0): In the case of vanishing
curvature, the connection is flat.
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Some important special cases of metric-affine geometries

Riemannian geometry (T̃α
µν = 0, Q̃αµν = 0): The connection is

symmetric and metric compatible, leading to Γ̃ρ
µν =

◦
Γρ

µν . GR and the
majority of the theories are here.

Torsional Teleparallel geometry (R̃αµνβ = 0, Q̃αµν = 0): The metric
satisfies the metric-compatibility condition but torsion is non-zero.
This talk will be based on this.
Symmetric Teleparallel geometry (R̃αµνβ = 0, T̃α

µν = 0): Both torsion
tensor and curvature are zero and the gravitational interactions are
only mediated through non-metricity.
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Metric-affine

Teleparallel

Riemann-Cartan

Weyl

Metric teleparallel

Symmetric teleparallel

Riemann

Minkowski

R̂
µ
ν
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→
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µ
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0
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µ
ν
ρ
σ
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0
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µ
ν
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σ
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0

Q̂µνρ → 0

Q̂µνρ → 0
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Figure: Classification of metric-affine geometries - Cube



Metric-affine

Riemann
R̂µ

νρσ 6= 0
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T̂ µ
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Sym. teleparallel

Q̂µνρ 6= 0
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Figure: Classification of metric-affine geometries
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The curvature tensor of an affinely connected metric space-time
contains corrections provided by the presence of torsion and
nonmetricity:(∇ν just Levi-Civita)

R̃λ
ρµν = Rλ

ρµν +∇µN
λ
ρν −∇νN

λ
ρµ +Nλ

σµN
σ
ρν −Nλ

σνN
σ
ρµ ,

where

Nλ
µν =

1

2

(
T λ

µν − Tµ
λ
ν − Tν

λ
µ

)
+

1

2

(
Qλ

µν −Qµ
λ
ν −Qν

λ
µ

)
,

Furthermore, the latter also leads to the definition of three
independent traces of this tensor, namely the Ricci and co-Ricci
tensors:

R̃µν = R̃λ
µλν , R̂µν = R̃µ

λ
νλ ,

as well as the so-called homothetic curvature tensor R̃λ
λµν , which

encodes the change of lengths of vectors provided by the trace part of
nonmetricity under their parallel transport along closed loops.
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Due to torsion, this connection introduces modifications in the
covariant derivative which indeed involves a change on its
commutation relations when considering an arbitrary vector vλ:

[∇̃µ, ∇̃ν ] v
λ = R̃λ

ρµν v
ρ + T ρ

µν ∇̃ρv
λ .

The change of lengths of a given vector kµ as well as the change of
angles between two unit timelike vectors m̂µ and n̂µ, under a general
parallel transport defined by a tangent vector V µ, is proportional to the
nonmetricity tensor:

V λ∇̃λ||k||2 = V λQλµνk
µkν ,

V λ∇̃λ (gµνm̂
µn̂ν) = V λQλµνm̂

µn̂ν − 1

2
V λQλµν (m̂

µm̂ν + n̂µn̂ν) m̂ρn̂ρ .
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Dynamics of metric-affine geometry

Gravitational action with dynamical torsion and nonmetricity:

S =

∫
d4x

√−g

[
Lm − 1

16π
Lg(R̃, T ,Q)

]
.

Correspondence between geometry and matter:

δSg

δea ν
= 16πθa

ν ,

δSg

δωa
bν

= 16π∆a
bν .

Here θa
ν is the energy-momentum tensor (canonical) and ∆a

bν is
the hypermomentum density tensor.
GL(4, R) group allows the definition of a large number of scalar
invariants depending on the aforementioned tensors.
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Dynamics of metric-affine geometry

General quadratic gravitational action with dynamical torsion and
nonmetricity:

S =

∫
d4x

√
−g

{
Lm +

1

16π

[
−R̃+ a1R̃

2 + a2R̃λρµνR̃
λρµν + a3R̃λρµνR̃

ρλµν

+ a4R̃λρµνR̃
µνλρ + a5R̃λρµνR̃

λµρν + a6R̃λρµνR̃
µλρν + a7R̃ρλµνR̃

µλρν

+ a8R̃µνR̃
µν + a9R̃µνR̃

νµ + a10R̂µνR̂
µν + a11R̂µνR̂

νµ + a12R̃µνR̂
µν

+ a13R̃µνR̂
νµ + a14R̃

λ
λµνR̃

ρ
ρ
µν + a15R̃

λ
λµνR̃

µν + a16R̃
λ

λµνR̂
µν

+ b1TλµνT
λµν + b2TλµνT

µλν + b3T
λ

λνT
µ

µ
ν + c1TλµνQ

µλν

+ c2T
λ

λνQ
νµ

µ + c3T
λ

λνQ
µν

µ + d1QλµνQ
λµν + d2QλµνQ

µλν

+ d3Q
λ

λνQ
µ

µ
ν + d4Qν

λ
λQ

νµ
µ + d5Q

λ
λνQ

νµ
µ

]}
.
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Overview of the Talk

1 Introduction to Metric-affine gravity
Why modified gravity?
Basic geometrical quantities

2 Metric-Affine gravity
Curvature, torsion and nonmetricity
Dynamics

3 MAG models with dynamical torsion and nonmetricity
Weyl part of nonmetricity
Axial symmetry in Weyl-Cartan geometry
Spherical symmetry with Shears and Weyl (complete
nonmetricity)
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MAG models with dynamical torsion and nonmetricity (Weyl only)

Nonmetricity can be decomposed in the Weyl part plus a ”traceless”
part:

Qλµν = gµνWλ +↗Qλµν .

where Wµ = 1
4 Qµν

ν .

Quadratic gravitational action with dynamical torsion and
nonmetricity in Weyl-Cartan geometry (Qλµν = gµνWλ and
↗Qλµν = 0)

S =

∫
d4x

√
−g

{
Lm +

1

64π

[
− 4R− 6d1R̃λ[ρµν]R̃

λ[ρµν]

− 9d1R̃λ[ρµν]R̃
µ[λνρ] + 8 d1R̃[µν]R̃

[µν] +
1

8
(32e1 + 8e2 + 17d1) R̃

λ
λµνR̃

ρ
ρ
µν

− 7d1R̃[µν]R̃
λ

λ
µν + 3 (1− 2a2)T[λµν]T

[λµν]
]}

.

Absence of a general Birkhoff’s theorem in MAG: new spherically
and axially symmetric vacuum solutions with independent dynamical
torsion and nonmetricity fields1,2

1
S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).

2
S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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Spherical symmetry

Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 +#8 +#2 = #12):

Lξgµν = LξT
λ
µν = LξWµ = 0 =⇒ LξR̃λρµν = 0

By solving these equations we find that torsion and nonmetricity
behave as

T t
tr = a(r) , T r

tr = b(r) , T θk
tθk = f(r) , T θk

rθk = g(r)

T θk
tθl = eaθk eb θl ϵab d(r) , T θk

rθl = eaθk eb θl ϵab h(r) ,

T t
θkθl = ϵkl k(r) sin θ1 , T r

θkθl = ϵkl l(r) sin θ1 ,

Wλ = (w1(r), w2(r), 0, 0) ,

whereas the metric is in the standard spherically symmetric form:

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

Here, ϵkl is the Levi-Civita symbol in two dimensions.
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Solution with dilations and spin

1 The solution for the metric behaves as Reissner-Nordström

gtt = − 1/grr ≡ Ψ(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d,e

r2
.

2 Nonmetricity sector:

Wµ =
κd,e
r

(1,− 1/Ψ(r), 0, 0) .

3 Torsion sector:

S̄a = − κs
r
(1, 1, 0, 0) ,

T̄ abc
2 =

κs
3r


0 0 0 0 0 0 2
0 0 0 0 0 0 2
0 0 1 0 0 1 0
0 − 1 0 − 1 0 0 0

 .
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What do these charges represent?

Torsion part:

1 Intrinsic spin generates gravitation. This effect does not exist in GR.

2 We know that the spin is a fundamental property of particles. Since
their masses contribute to gravity, why their spin do not?

3 The solution is in vacuum and a charge κs appears (spin charge).
Analogue to the case of Schwarzschild where the mass M appears.

4 We expect that the spin charge might be important in certain
astrophysical scenarios such as: highly mangnetized neutron stars;
supermassive black holes with endowed spin.
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What do these charges represent?

Nonmetricity part - only Weyl:

1 Intrinsic dilations generates gravitation. This effect does not exist in GR.

2 dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

3 Weyl part of nonmetricity is ”scale invariant”

4 Do all particles in nature have different dilations? is this property
important in particle physics?
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Extension to axisymmetric space-times

Metric, torsion and nonmetricity tensors in symmetric space-times:

Lξgµν = LξT
λ
µν = LξQ

λ
µν = 0 =⇒ LξR̃

λ
ρµν = 0 .

Stationary and axisymmetric space-times:

#10 → #4

 ds2 = Ψ1(r, ϑ) dt
2 − dr2

Ψ2(r,ϑ)

− r2Ψ3(r, ϑ)
[
dϑ2 + sin2 ϑ(dφ−Ψ4(r, ϑ)dt)

2
] ;

#24
{
T λ

µν = T λ
µν(r, ϑ)

#4
{
Wµ = (Wt(r, ϑ),Wr(r, ϑ),Wϑ(r, ϑ),Wφ(r, ϑ)) .
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Axisymmetric space-times - Kerr-Newmann de-Sitter

Rotating Kerr-Newman metric structure3:

ds2 = Ψ(r, ϑ) dt2 − r2 + a2 cos2 ϑ

(r2 + a2 cos2 ϑ)Ψ(r, ϑ) + a2 sin2 ϑ
dr2

−
(
r2 + a2 cos2 ϑ

)
dϑ2 + 2a (1−Ψ(r, ϑ)) sin2 ϑdtdφ

− sin2 ϑ
[
r2 + a2 + a2 (1−Ψ(r, ϑ)) sin2 ϑ

]
dφ2 ,

Ψ(r, ϑ) = 1−
[
2mr + 4e1(κ

2
d,e + κ2

d,m)− d1κ
2
s

]
r2 + a2 cos2 ϑ

.

Field strength tensors:

R̄[µν] =
1

12
ελ σµν∇λS̄

σ +
1

2
∇λ t̄

λ
µν ; R̃λ

λµν = 4∇[νWµ] ;

R̄λ
[µνρ] =

1

6
ελ σ[ρν∇µ]S̄

σ +∇[µ t̄
λ

ρν] +
1

4
ελ ωσ[ρ t̊

σ
1 µν]S̄

ω

−
1

18
εσµνρT̊

λ
1 S̄σ .

3
S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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Axisymmetric space-times - Kerr-Newmann de-Sitter

Nonmetricity sector:(no approx.)

w1(r, ϑ) =
κd,er − a κd,m cosϑ

r2 + a2 cos2 ϑ
, w3(r, ϑ) = 0 ,

w2(r, ϑ) = − κd,er

(r2 + a2 cos2 ϑ)Ψ(r, ϑ) + a2 sin2 ϑ
,

w4(r, ϑ) = κd,m

(
r2 + a2

r2 + a2 cos2 ϑ
cosϑ− γ

)
− a

κd,er sin
2 ϑ

r2 + a2 cos2 ϑ
.

Torsion sector (decoupling limit between the spin and the orbital
angular momentum |aκs| ≪ 1):

S̄a = − κs

r
(1, 1, 0, 0) +O(aκs) ,

T̄ abc
2 =

κs

3r


0 0 0 0 0 2
0 0 0 0 0 2
0 0 1 0 1 0
0 − 1 0 − 1 0 0

+O(aκs) .
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Gravitational spin-orbit interaction

We found a solution in the decoupling limit aκs ≪ 1, which ensures
that the Maxwell equation and closure conditions are fulfilled by the
field strength tensors of torsion

∇λR̃
λ
[ρµν] = ∇µR̃

[µν] = 0 , ∇[σR̃λ[ρµν]] = ∇[λR̃[µν]] = 0 .

Possible new effects in the decoupling limit
The dynamics of torsion and nonmetricity alters the geometry of the
space-time =⇒ Additional modifications provided by a strong coupling
between the orbital and the spin angular.

Gravitational spin-orbit interaction:

HLS =
1

m2
er

∂V

∂r
L · S ≈ d1

2r

∂gtt
∂r

aκs cosϑ
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Extension to axisymmetric space-times - Plebanski-Damianski

It is well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains4:

Mass M

Angular momentum a

Taub-NUT charge l

Acceleration α

Further, one can add a cosmological constant Λ and a electric
charge qe and magnetic charge qm.
The solution in GR is called Plebanski-Damianski solution.

4J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127
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Extension to axisymmetric space-times - Plebanski-Damianski

The Plebanski-Damianski metric was recently presented in an
improved form with Λ = 0 in by Podolský and Vrátný (Phys. Rev. D 104
(2021), 084078), and it can be written as

ds2 = Ω−2(r, ϑ)
{
Φ1(r, ϑ)

[
dt−

(
a sin2 ϑ+ 2l(χ− cosϑ)

)
dφ

]2 − dr2

Φ1(r, ϑ)

− dϑ2

Φ2(r, ϑ)
− Φ2(r, ϑ) sin

2 ϑ
[
a dt−

(
r2 + a2 + l2 + 2χal

)
dφ

]2}
.

where Φi,Ω are cumbersome functions depending on these parameters.

We just found this new form with the cosmological constant5 with
Φ1(r, ϑ) =

Q(r)
ρ2(r,ϑ)

, Φ2(r, ϑ) =
P (ϑ)
ρ2(r,ϑ)

, and
ρ2(r, ϑ) = r2 + (a cosϑ+ l)2. Here, Q(r),Ω(ϑ) include the PD
quantities.

5S. Bahamonde, J. G. Valcarcel and L. Järv, JCAP 04 (2022) no.04, 011.
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Extension to axisymmetric space-times - Plebanski-Damianski

We found a solution to OUR THEORY in the decoupling limit
|xiκs| ≪ 1 with x = (a, l, α) with additional torsion and nonmetricity
terms

w1(r, ϑ) =
κd,er − κd,m(a cosϑ + l)

r2 + (a cosϑ + l)2
, w2(r, ϑ) = −

κd,er − κd,m (aγ + l)

Q(r)
,

w3(r, ϑ) = −κd,m

√√√√K(ϑ) −
(

cotϑ − γ cscϑ

P (ϑ)

)2

,

w4(r, ϑ) = κd,m


(
r2 + a2 − l2

)
cosϑ + al sin2 ϑ + 2χl (a cosϑ + l)

r2 + (a cosϑ + l)2
− γ


−

κd,er
[
a sin2 ϑ + 2l (χ − cosϑ)

]
r2 + (a cosϑ + l)2

,

T̄
ϑ

φt = − T̄
φ

ϑt sin
2
ϑ = − T̄

ϑ
φr

Q(r)

ρ2(r, ϑ)
= T̄

φ
ϑr

Q(r)

ρ2(r, ϑ)
sin

2
ϑ =

κs sinϑ

r
+ O(xiκs) .

Similarly as electromagnetism, the torsion behaves as a
Coulomb-like quantity depending on a spin charge κs and the
non-metricity on the dilation charge κd.
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Nonmetricity decomposition

Nonmetricity can be decomposed in the Weyl part plus a ”traceless”
part:

Qλµν = gµνWλ +↗Qλµν .

where

Wµ =
1

4
Qµν

ν ,

↗Qλµν = gλ(µΛν) −
1

4
gµνΛλ +

1

3
ελρσ(µΩν)

ρσ + qλµν ,

We defined a vector, and two traceless and pseudotraceless tensors

Λµ =
4

9
(Qν

µν −Wµ) ,

Ωλ
µν = −

[
εµνρσQρσλ + εµνρ λ

(
3

4
Λρ −Wρ

)]
,

qλµν = Q(λµν) − g(µνWλ) −
3

4
g(µνΛλ) ,
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The traceless part of nonmetricity and shears

If this quantity is different to zero, when we parallel transport a vector,
not only its norm changes but also its angle.

It is invariant under shears transformations.

Shears: Deformations without changing the volume.

Up to now, there are not exact solutions with shears in MAG.

Sebastian Bahamonde (*) Black Holes in metric-affine 33 / 42



The traceless part of nonmetricity and shears

If this quantity is different to zero, when we parallel transport a vector,
not only its norm changes but also its angle.

It is invariant under shears transformations.

Shears: Deformations without changing the volume.

Up to now, there are not exact solutions with shears in MAG.

Sebastian Bahamonde (*) Black Holes in metric-affine 33 / 42



The traceless part of nonmetricity and shears

If this quantity is different to zero, when we parallel transport a vector,
not only its norm changes but also its angle.

It is invariant under shears transformations.

Shears: Deformations without changing the volume.

Up to now, there are not exact solutions with shears in MAG.

Sebastian Bahamonde (*) Black Holes in metric-affine 33 / 42



The traceless part of nonmetricity and shears

If this quantity is different to zero, when we parallel transport a vector,
not only its norm changes but also its angle.

It is invariant under shears transformations.

Shears: Deformations without changing the volume.

Up to now, there are not exact solutions with shears in MAG.

Sebastian Bahamonde (*) Black Holes in metric-affine 33 / 42



MAG theory with shears

Let us first consider a simple model where torsion is not propagating
and the traceless part of nonmetricity is dynamical:

S =
1

16π

∫
d4x

√−g
[
−R+ 2f1R̃(λρ)µνR̃

(λρ)µν

+ 2f2

(
R̃(µν) − R̂(µν)

)(
R̃(µν) − R̂(µν)

)]
,

As can be seen, the propagation of the nonmetricity field described in
the action is carried out by the symmetric part of the curvature tensor
and its symmetric contraction:

R̃(λρ)
µν = ∇̃[νQµ]

λρ +
1

2
T σ

µνQσ
λρ ,

R̃(µν) − R̂(µν) = ∇̃(µQ
λ
ν)λ − ∇̃λQ(µν)

λ −Qλρ
λQ(µν)ρ +Qλρ(µQν)

λρ

+ Tλρ(µQ
λρ

ν) ,

which in turn constitute deviations from the third Bianchi of GR.
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Spherical symmetry with nonmetricity and torsion

Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 +#8 +#12 = #22):

Lξgµν = LξT
λ
µν = LξQαµν = 0 =⇒ LξR̃λρµν = 0

Nonmetricity now contains all the 12 dof:

Qttt = q1(r) , Qtrr = q2(r) , Qttr = q3(r) ,

Qtϑϑ = Qtφφ csc2 ϑ = q4(r) , Qrtt = q5(r) , Qrrr = q6(r) ,

Qrtr = q7(r) , Qrϑϑ = Qrφφ csc2 ϑ = q8(r) ,

Qϑtϑ = Qφtφ csc2 ϑ = q9(r) , Qϑrϑ = Qφrφ csc2 ϑ = q10(r) ,

Qϑtφ = −Qφtϑ = q11(r) sinϑ , Qϑrφ = −Qφrϑ = q12(r) sinϑ ,

whereas the metric and torsion are the same as before.
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How to find a solution with all of these dof?

We are only interested in the traceless part of Qαµν (containing
shears), so that:

1 We eliminate the Weyl part of nonmetricity Wµ = 1
4 Qµν

ν = 0 by setting

q1(r) =
Ψ1(r)

r2
(
r2q2(r)Ψ2(r) + 2q4(r)

)
,

q5(r) =
Ψ1(r)

r2
(
r2q6(r)Ψ2(r) + 2q8(r)

)
.

2 We imposed N[λρ]µ = 0 which is equivalent to Tλµν = Q[µν]λ:
→ Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.

3 We demand the corresponding torsion and nonmetricity scalars of the
solution to be regular.

After following these three steps we end up with 2 dof (metric)+ 5 dof
(torsion/nonmetricity) which is only 7 dof.
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After following these three steps we end up with 2 dof (metric)+ 5 dof
(torsion/nonmetricity) which is only 7 dof.
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How to find a solution with all of these dof?
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4 Qµν

ν = 0 by setting

q1(r) =
Ψ1(r)

r2
(
r2q2(r)Ψ2(r) + 2q4(r)

)
,

q5(r) =
Ψ1(r)

r2
(
r2q6(r)Ψ2(r) + 2q8(r)

)
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New solution only with shears

By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

f2 = − 1

4
f1.

The form of qi and ti is involved. One component of nonmetricity is
arbitrary! (problem!)
The metric behaves as

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

with

Ψ1(r) = Ψ2(r) = 1− 2m

r
− 2f1κ

2
sh

r2
,

where κsh is interpreted as a new charge, ”shear charge”.
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Reissner-Nordström-like solutions with spin, dilation and shear charges

After finding the shear part alone, we found a theory having the first
solution (with spin+dilation) plus the second (with only shears).

The action of the full model is

S =
1

64π

∫ [
− 4R− 6d1R̃λ[ρµν]R̃

λ[ρµν] − 9d1R̃λ[ρµν]R̃
µ[λνρ]

+ 2d1

(
R̃[µν] + R̂[µν]

)(
R̃[µν] + R̂[µν]

)
+ 18d1R̃λ[ρµν]R̃

(λρ)µν

− 3d1R̃(λρ)µνR̃
(λρ)µν + 6d1R̃(λρ)µνR̃

(λµ)ρν + 2 (2e1 − f1) R̃
λ
λµνR̃

ρ
ρ
µν

+ 8f1R̃(λρ)µνR̃
(λρ)µν − 2f1

(
R̃(µν) − R̂(µν)

)(
R̃(µν) − R̂(µν)

)
+ 3 (1− 2a2)T[λµν]T

[λµν]
]
d4x

√−g .

When traceless part of nonmetricity is zero, the above action
coincides with the first one.
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Reissner-Nordström-like solutions with spin, dilation and shear charges

Since we already found the solution for each model independently, it
is not so difficult to find that the solution for the full model.

In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free)
The solution gives us the following metric

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

with

Ψ1(r) = Ψ2(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d − 2f1κ

2
sh

r2
,

having the three possible charges: spin, dilation and shear.

Sebastian Bahamonde (*) Black Holes in metric-affine 40 / 42



Reissner-Nordström-like solutions with spin, dilation and shear charges

Since we already found the solution for each model independently, it
is not so difficult to find that the solution for the full model.
In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free)

The solution gives us the following metric

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

with

Ψ1(r) = Ψ2(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d − 2f1κ

2
sh

r2
,

having the three possible charges: spin, dilation and shear.

Sebastian Bahamonde (*) Black Holes in metric-affine 40 / 42



Reissner-Nordström-like solutions with spin, dilation and shear charges

Since we already found the solution for each model independently, it
is not so difficult to find that the solution for the full model.
In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free)
The solution gives us the following metric

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
.

with

Ψ1(r) = Ψ2(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d − 2f1κ

2
sh

r2
,

having the three possible charges: spin, dilation and shear.

Sebastian Bahamonde (*) Black Holes in metric-affine 40 / 42



Solution with the geometrical charges, cosmological constant and electromagnetic field

On the other hand, the solution can also be trivially generalised to
include the cosmological constant and Coulomb electromagnetic
fields with electric and magnetic charges qe and qm, which are
decoupled from torsion under the assumption of the minimal coupling
principle. This natural extension is then described by a
Reissner-Nordström-de Sitter-like geometry

Ψ(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d − 2f1κ

2
sh + q2e + q2m

r2
+

Λ

3
r2 ,

which turns out to represent the broadest family of static and
spherically symmetric black hole solutions obtained in MAG so
far.
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Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42



Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42



Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42



Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42



Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42



Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42



Conclusions and what do to next

We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 42 / 42


	Introduction to Metric-affine gravity
	Why modified gravity?
	Basic geometrical quantities

	Metric-Affine gravity
	Curvature, torsion and nonmetricity
	Dynamics

	MAG models with dynamical torsion and nonmetricity
	Weyl part of nonmetricity
	Axial symmetry in Weyl-Cartan geometry
	Spherical symmetry with Shears and Weyl (complete nonmetricity)


