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Overview of the Talk

0 Introduction to Metric-affine gravity
@ Why modified gravity?
@ Basic geometrical quantities
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General Relativity - Assumptions

General Relativity is based upon different assumptions that can be
understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

@ Equivalence principle
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General Relativity - Assumptions

General Relativity is based upon different assumptions that can be
understood as the fulfilling of the Lovelock’s theorem. Some
assumptions are:

@ Equivalence principle

@ General covariance: Invariant under diffeomorphisms and Local
Lorentz transformations.

@ Riemannian geometry: The connection is the Levi-Civita one.
@ 4-dimension

@ 2nd order derivatives: gravitational action contains only second
derivatives.

@ Locality
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Why modified gravity?

@ GR is not compatible with quantum field theory;
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Why modified gravity?

@ GR is not compatible with quantum field theory;
@ The cosmological constant A problem; Dark energy, dark matter.

@ The H, tension: 50 tension between current expansion rate Hy
using Planck data and direct model-independent measurements in
the local universe;

@ Big Bang singularity;

@ What is really the inflaton?

@ Strong gravity regime needs to be tested;

@ A good way to understand GR is to modify it;
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How to modify it?

Non-Riemannian geometry Higher-order theories

Metric-affine Einstein-Cartan

gravity

Poincaré gauge gravity
Teleparallel theories

Quantum gravity theories

Horava-Lifschitz String theory

Other approaches

Padmanabhan
thermod.
Analogue
gravity

Other approaches General

Relativity

[Supergravity] [Rainbow gravity]

D-dimensional theories Tensor-vector-scalar theories
(Einstein-Ether) (Proca theories)
Kaluza-Klein Beyond Horndeski

rre: Classification of theories of gravity. (S. Bahamonde et.al., “Teleparallel Gravity: From
ry to Cosmology,” [arXiv:2106.13793 [gr-qc]].)



Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g,,, (10 comp.) as well as the coefficients I',,, (64
comp.) of an affine connection.
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g,,, (10 comp.) as well as the coefficients I',,, (64
comp.) of an affine connection.

@ The most general connection can be written as

Connection decomposition

Levi-Civita Torsw/:l'n part NonmetEC|ty part

PA A +1T>‘ Y JrEQ,\ — Q2
nr = % 9~ M (b v) T o w (w v)»
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables

are a metric g, (10 comp.) as well as the coefficients ff’#,, (64

comp.) of an affine connection.

@ The most general

connection can be written as

Connection decomposition

Levi-Civita

~ =
m,= 1
py — nv

Torsion part Nonmetricity part

-~

Loa A Lo A
+§T /],I/_T(lj, V)+§Q ,U,I/_Q(,u, V)

Curvature |RM,p0 = 0T yo — OoTHyp 4+ T pl T pe — TH 6T,
Torsion T“,,p = f‘“p,, - f‘“,,p
Nonmetricity|Quvp = Vigvp = ugvp — I0pugop — D pugvo
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What does curvature geometrically represent?

Curvature tensor Ry,

Rotation experienced by a vector when it is parallel transported along
a closed curve
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What does torsion geometrically represent?

Torsion tensor 7,

non-closure of the parallelogram formed when two infinitesimal vectors
are parallel transported along each other.
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What does non-metricity geometrically represent?

Non-metricity tensor Q...

measures how much the length and angle of vectors change as we
parallel transport them, so in metric spaces the length of vectors is
conserve
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Some important special cases of metric-affine geometries

o Riemann-Cartan geometry (Qaﬂ,, = 0): If non-metricity vanishes, the
metric satisfies the metric-compatibility condition Vg, = 0. Poincaré
grvity assumes this geometry.

Sebastian Bahamonde (*) Black Holes in metric-affine 10/42



Some important special cases of metric-affine geometries

o Riemann-Cartan geometry (Qaﬂ,, = 0): If non-metricity vanishes, the
metric satisfies the metric-compatibility condition Vg, = 0. Poincaré
grvity assumes this geometry.

o Weyl gravity (T“w, = 0): If the torsion vanishes, the connection is
called symmetric I'?[,,,; = 0.

Sebastian Bahamonde (*) Black Holes in metric-affine 10/42



Some important special cases of metric-affine geometries

@ Riemann-Cartan geometry (Qaﬂ,, = 0): If non-metricity vanishes, the
metric satisfies the metric-compatibility condition Vg, = 0. Poincaré
grvity assumes this geometry.

o Weyl gravity (T“w, = 0): If the torsion vanishes, the connection is
called symmetric I'?[,,,; = 0.

o General Teleparallel geometry (R, 3 = 0): In the case of vanishing
curvature, the connection is flat.
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Some important special cases of metric-affine geometries

o Riemannian geometry (7°,, = 0,Q,,, = 0): The connection is
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Some important special cases of metric-affine geometries

o Riemannian geometry (7°,, = 0,Q,,, = 0): The connection is
symmetric and metric compatible, leading to T, = I'*,,,.. GR and the
majority of the theories are here.

o Torsional Teleparallel geometry (R,,.,5 = 0, Qu, = 0): The metric
satisfies the metric-compatibility condition but torsion is non-zero.
This talk will be based on this.

o Symmetric Teleparallel geometry (2,5 = 0,7, = 0): Both torsion
tensor and curvature are zero and the gravitational interactions are
only mediated through non-metricity.
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Overview of the Talk

e Metric-Affine gravity
@ Curvature, torsion and nonmetricity
@ Dynamics
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@ The curvature tensor of an affinely connected metric space-time
contains corrections provided by the presence of torsion and
nonmetricity:(V, just Levi-Civita)

A A A A A A
R PHV:R PMV+VMN pv—va pu+N chUpV_N UVNGPAH
where

1
NA;u/: (TA,UJ/_T,U,AV_TV)\M>+§<Q>\/LV_QM)\V_QV)\/L)7

| =
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The curvature tensor of an affinely connected metric space-time
contains corrections provided by the presence of torsion and
nonmetricity:(V, just Levi-Civita)

P A A A A A
R oy = R puwy + VuN" oy = VN 5 + N7 N7 oy = Ny N7 1,

where

1 1
N)\}J,I/ = 5 (TA}J,U_TMAI/_TZ/}\M> +§ <QANV_QMAV_QV>\M) )
Furthermore, the latter also leads to the definition of three
independent traces of this tensor, namely the Ricci and co-Ricci
tensors:

5, PA » D A
Ruu:R LAV 5 R/,LV:R/,L VA

as well as the so-called homothetic curvature tensor R* ,,,,, which
encodes the change of lengths of vectors provided by the trace part of
nonmetricity under their parallel transport along closed loops.
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@ Due to torsion, this connection introduces modifications in the
covariant derivative which indeed involves a change on its
commutation relations when considering an arbitrary vector v*:

W;u V,|v* = R} il I @pv’\ :

Sebastian Bahamonde (*) Black Holes in metric-affine 16/42



@ Due to torsion, this connection introduces modifications in the
covariant derivative which indeed involves a change on its
commutation relations when considering an arbitrary vector v*:

[@M, V,|v* = R} il I @va :

@ The change of lengths of a given vector k£ as well as the change of
angles between two unit timelike vectors m* and n*, under a general
parallel transport defined by a tangent vector V'#, is proportional to the
nonmetricity tensor:

VAV K2 = VAQxu k" k",

= 1
VAV)\ (gwm“ﬁ”) = VAQAWm“ﬁ” — 5‘/)‘@)\#” (mfn” + aklnY) mpﬁp.

Sebastian Bahamonde (*) Black Holes in metric-affine



Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

1 .
5= [atayg [en - -tuR.T.0)].
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Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

1 .
_ A = -
S = /d x\/—g [ﬁm 167T£g(72, T,9)| .

@ Correspondence between geometry and matter:

Gee, = 1676,",
05  _ 16TA, ™.
dwea bv

Here 4, " is the energy-momentum tensor (canonical) and A, % is
the hypermomentum density tensor.
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Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

1 3
S= /d4x\/—_g [ﬁm— L, (R,T.Q)| .

@ Correspondence between geometry and matter:

55,

Gee, = 1676,",
05  _ 16TA, ™.
dwea bv

Here 4, " is the energy-momentum tensor (canonical) and A, % is
the hypermomentum density tensor.

@ GL(4, R) group allows the definition of a large number of scalar
invariants depending on the aforementioned tensors.
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Dynamics of metric-affine geometry

@ General quadratic gravitational action with dynamical torsion and
nonmetricity:

5= [dev=g {.cm b [ R B 0 R+ a3 R R
+ s R pun R* M 4 a5 Ry M + a6 Ropuw R*P” + a7 R R¥M”
a4 CLSRWRW aF QQRWR”“ aF alofﬁwéuy A allRuuRVM 4 alQRWRW
ate alSR;,WRWL + a R AWRP P as R AWRW + a1 R AWRW
+ 01T T + 0T T + 0T 0 T 7 + a1 To QY
2T Q" 1+ 3T\ Q™ 1+ d1Qru QM + daQp QMY

+ d3Q>\ AuQu N v + d4QV . AQV‘L I + dSQA )\VQV“ “i| } .
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Overview of the Talk

@ MAG models with dynamical torsion and nonmetricity
@ Weyl part of nonmetricity
@ Axial symmetry in Weyl-Cartan geometry
@ Spherical symmetry with Shears and Weyl (complete
nonmetricity)
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MAG models with dynamical torsion and nonmetricity (Weyl only)

@ Nonmetricity can be decomposed in the Weyl part plus a "traceless”
part:
Qxuw = GuwWi + @ -
where W, = 1 Q.

i S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
28. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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MAG models with dynamical torsion and nonmetricity (Weyl only)

@ Nonmetricity can be decomposed in the Weyl part plus a "traceless

part:
Qkuu = g Wi + Q)\;W 0

where W, = 1 Q.
@ Quadratic gravitational action with dynamical torsion and
nonmetricity in Weyl-Cartan geometry (Q),, = g,, W), and

Q)\,ull - 0)
1 _ _
S = / d*ov/=g{ Lo+ 5= | — 4R — 61 Ry R
- - - - 1 - -
— 9d1 Ry jpun) R*™P) 4 8 dy Ry R + g (32e1 + 8o + 17dy) R\ RP 1

= 7d1R[/“,]R>\ AP +3 (1 — 2az2) T[AHV]T[)"'W]] } .

i S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
28. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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MAG models with dynamical torsion and nonmetricity (Weyl only)

@ Nonmetricity can be decomposed in the Weyl part plus a "traceless”
part:
Qk;w = guwWx + Q)\;W 0

where W, = 1 Q"
@ Quadratic gravitational action with dynamical torsion and
nonmetricity in Weyl-Cartan geometry (Q),, = g,, W), and

Q)\m/ - 0)
— 4./ 1 _ _ P pAlpuv]
d x\/—g{ Lm + Ry 4R 6d1R>\[puy]R
- - - . 1 - -
— 9d1 Ry jpun) R*™P) 4 8 dy Ry R + g (32e1 + 8o + 17dy) R\ RP 1

= 7d1R[Hy]R>\ AP 43 (1 — 2az2) T[AHV]T[)"'W]] } .

@ Absence of a general Birkhoff’s theorem in MAG: new spherically
and axially symmetric vacuum solutions with independent dynamical

_tQ.I‘_S.I_O.D_aﬂ_d_D_QD.m_e_'LI’_I_QIIQLf.leldS1 2

S. Bahamonde and J. G. Valcarcel, JCAP 09, 057 (2020).
28. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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Spherical symmetry

@ Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 + #8 + #2 = #12):

Legu = ,CgTA,u,, =LW,=0 = EﬁR)\pw, =0
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Spherical symmetry

@ Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 + #8 + #2 = #12):
Legu = LT = LW, =0 = LeRypu =0

@ By solving these equations we find that torsion and nonmetricity
behave as
T'yp=a(r), T yp=0b(r), T%w, =f(r), T%.9 =g(r)
T 10, = e b 6, €ab d(1) , T "o, = e b 9, €ab N(T)
T 0.0, = €1 k(1) sinfy, T g9, = €xl(r) sindy,
Wy = (wyi(r), ws(r),0,0) ,

whereas the metric is in the standard spherically symmetric form:

dr?
W (r)

Here, €y, is the Levi-Civita symbol in two dimensions.

ds* = Uy (r) dt* — — 17 (b3 + sin® 01d63) .
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Solution with dilations and spin

@ The solution for the metric behaves as Reissner-Nordstrom

2 2
om  dikE — 461"€d,e

gtt:_l/gTrE\IJ(T):]-_T‘i' 2
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Solution with dilations and spin

@ The solution for the metric behaves as Reissner-Nordstrom
2 d1k2 — dey k32
gtt:_l/grrE\IJ(T):l—_m‘Fs—Zd’e-
T T
©Q Nonmetricity sector:

Rd,e

W, = (1,—1/¥(r),0,0) .
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Solution with dilations and spin

@ The solution for the metric behaves as Reissner-Nordstrém

2 2
om  dikE — 4emd’e

=-1/gr=0(r)=1-—
gt /9 () r + 2
©Q Nonmetricity sector:
Rd,e
WM = (13_1/\11(71)5030) .
© Torsion sector:
= K
= - 2(1,1
S r ( ) 707 0) )
0 0 0 0 0 0 2
Fabe _Ks | O 00 0 00 2
2 3r| 0 01 0010
0O -1 0 -1 0 0 O
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What do these charges represent?

o Torsion part:
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©Q We know that the spin is a fundamental property of particles. Since
their masses contribute to gravity, why their spin do not?
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What do these charges represent?

o Torsion part:

@ Intrinsic spin generates gravitation. This effect does not exist in GR.

©Q We know that the spin is a fundamental property of particles. Since
their masses contribute to gravity, why their spin do not?

© The solution is in vacuum and a charge «, appears (spin charge).
Analogue to the case of Schwarzschild where the mass M appears.

@ We expect that the spin charge might be important in certain
astrophysical scenarios such as: highly mangnetized neutron stars;
supermassive black holes with endowed spin.
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What do these charges represent?

@ Nonmetricity part - only Weyl:
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@ Nonmetricity part - only Weyl:

@ Intrinsic dilations generates gravitation. This effect does not exist in GR.

Q@ dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)
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What do these charges represent?

@ Nonmetricity part - only Weyl:

@ Intrinsic dilations generates gravitation. This effect does not exist in GR.

Q@ dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

©Q Weyl part of nonmetricity is “scale invariant”

Sebastian Bahamonde (*) Black Holes in metric-affine 24/42



What do these charges represent?

@ Nonmetricity part - only Weyl:

@ Intrinsic dilations generates gravitation. This effect does not exist in GR.

Q@ dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

©Q Weyl part of nonmetricity is “scale invariant”

@ Do all particles in nature have different dilations? is this property
important in particle physics?
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Extension to axisymmetric space-times

@ Metric, torsion and nonmetricity tensors in symmetric space-times:

Legu = LT 0 = LeQY 0 =0 = LR, =0.
9w §L I 4L pp
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Extension to axisymmetric space-times

@ Metric, torsion and nonmetricity tensors in symmetric space-times:
Eggw, = £§T>‘ py = [fQA py = 0 = ﬁERA ppv = 0.
o Stationary and axisymmetric space-times:

ds? = Uy (r,0) df* — g

— 2T (r, ) [dm +sin2 0(dp — Wa(r, 19)dt)2]

)

#10—>#4{

494 {T’\ =T (1, 9)

44 {Wu = (Wi(r, 9), W (r, 9), Wy (r, 9), W (r, 0)) .
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Axisymmetric space-times - Kerr-Newmann de-Sitter

o Rotating Kerr-Newman metric structure?®:

72 + a? cos? ¥ dr?
(r2 + a2 cos2 9) ¥(r,d) + a2 sin® ¢
— (r® + a® cos® ¥) d¥* + 2a (1 — ¥(r,d)) sin® 9 dtdep
—sin® 9 [7'2 +a® +ad* (1 — U(r,9))sin’ V] do?,

ds® = U(r,0) dt* —

[2mr + de1 (K3 o + K3 m) — d1k2]

U(r,d)=1-—
(r9) r2 4+ a2 cos2 ¥

3S. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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Axisymmetric space-times - Kerr-Newmann de-Sitter

o Rotating Kerr-Newman metric structure?®:

72 + a? cos? ¥ dr?
(r2 + a2 cos2 9) ¥(r,d) + a2 sin® ¢
— (r® + a® cos® ¥) d¥* + 2a (1 — ¥(r,d)) sin® 9 dtdep
—sin® 9 [7'2 +a® +ad* (1 — U(r,9))sin’ V] do?,

ds® = U(r,0) dt* —

[2mr + de1 (K3 o + K3 m) — d1k2]
r2 4+ a2 cos2 ¥ ’

U(r,9)=1-—

o Field strength tensors:

1
R[W]— = ou Va5 + VAt wo; R =4V Wy

1
A A o
R fuvp) = g€ il TS oty Ze wolpt? w18

186(7,“,,,T1 S .

38. Bahamonde and J. G. Valcarcel, JCAP 01 (2022) no.01, 011.
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Axisymmetric space-times - Kerr-Newmann de-Sitter

@ Nonmetricity sector:(no approx.)

Kd,e” — G Kd,m COS U

wy (r,9) = T aTcoTg ws(r,¥) =0,
wa(r,9) = — e ; )
(r2 + a2 cos2 9) U (r,¥) + a2 sin? ¢
r2 4 2 Kd.er sin? ¥
Bl ) = i (ﬁ cos ) = ’*) O
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Axisymmetric space-times - Kerr-Newmann de-Sitter

@ Nonmetricity sector:(no approx.)

Kd,eT — @ Kd,m COS ¥

wi(r,9) = g R ws(r,9) =0,
Rd,eT
walr9) = = (r? + a? cos? 9) W (r, ) + a?sin®* 9’
r2 4 q? Kd,er sin® 9
wa(r0) = biae (m cosv = 7) BRCETr=

@ Torsion sector (decoupling limit between the spin and the orbital
angular momentum |aks| < 1):

8= = "2(1,1,0,0) + Ofars)

0 00 0 0 2

’abc_& 0 0 0 0 0 2

=30 o1 o 1 0 |TObs)
0 -1 0 -1 0 0
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Gravitational spin-orbit interaction

@ We found a solution in the decoupling limit axs < 1, which ensures
that the Maxwell equation and closure conditions are fulfilled by the
field strength tensors of torsion

VAR lop] = VMR[W] =0, v[U}%\[pw’]} = V[/\}?[/u/]] =0.
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@ We found a solution in the decoupling limit axs < 1, which ensures
that the Maxwell equation and closure conditions are fulfilled by the
field strength tensors of torsion

VAR lop] = VMR[W] =0, v[U}?A[pw/]] = V[/\}?[/u/]] =0.

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the
space-time —-
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Gravitational spin-orbit interaction

@ We found a solution in the decoupling limit axs < 1, which ensures
that the Maxwell equation and closure conditions are fulfilled by the
field strength tensors of torsion

V,\]:Z’\ lopr] = VMR[W] =0, V[U]"é)\[pw/]] = v[/\lfz[/w}] =0.

Possible new effects in the decoupling limit

The dynamics of torsion and nonmetricity alters the geometry of the
space-time — Additional modifications provided by a strong coupling
between the orbital and the spin angular.

o Gravitational spin-orbit interaction:

8V S ~ dl 8gtt

1
m2ror " 2r o °

His =

ks cOS U
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Extension to axisymmetric space-times - Plebanski-Damianski

@ Itis well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains®:

Mass M

Angular momentum |a

—

Taub-NUT charge

Acceleration «

4J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127
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@ Itis well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains®:

Mass M

Angular momentum |a

—

Taub-NUT charge

Acceleration «

@ Further, one can add a cosmological constant A and a electric
charge ¢. and magnetic charge q¢,,.

4J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127
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Extension to axisymmetric space-times - Plebanski-Damianski

@ Itis well known that the most general axisymmetric system in
vacuum that can describe a BH type D in GR contains®:

Mass M

Angular momentum |a

—

Taub-NUT charge

Acceleration «

@ Further, one can add a cosmological constant A and a electric
charge ¢. and magnetic charge q¢,,.

@ The solution in GR is called Plebanski-Damianski solution.

4J. F. Plebanski and M. Demianski, Annals Phys. 98 (1976), 98-127
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Extension to axisymmetric space-times - Plebanski-Damianski

@ The Plebanski-Damianski metric was recently presented in an
improved form with A = 0 in by Podolsky and Vratny (Phys. Rev. D 104
(2021), 084078), and it can be written as

2
ds? = Q_z(r,ﬁ){q)l(r, 9) [dt — (asin® 9 + 21(x — cos?)) d<,0]2 — %
1\
_ 4 ®y(r,9)sin® ¥[adt — (r® + a® + 1 + 2xal) dcp]2}.
¢’2(T7’l9) ’

where ®,, Q) are cumbersome functions depending on these parameters.

5S. Bahamonde, J. G. Valcarcel and L. Jarv, JCAP 04 (2022) no.04, 011.
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Extension to axisymmetric space-times - Plebanski-Damianski

@ The Plebanski-Damianski metric was recently presented in an
improved form with A = 0 in by Podolsky and Vratny (Phys. Rev. D 104

(2021), 084078), and it can be written as

2
ds? = Q2(r, 19){<I>1(r, 9) [dt — (asin® 9 + 21(x — cosd)) de]” — %
I\
= d—ﬁ? — Oy(r, ) sinzﬁ[adt — (7‘2 +a?+1%+ 2xal) d‘P]2} .
@2(7“77.9) ’

where ®,, Q) are cumbersome functions depending on these parameters.

@ We just found this new form with the cosmological constant® with

1 (r,0) = 205, Bo(r,9) = s, and

p%(r,9) = r? + (acos ¥ + 1)%. Here, Q(r), Q(¥9) include the PD
quantities.

5S. Bahamonde, J. G. Valcarcel and L. Jarv, JCAP 04 (2022) no.04, 011.

Black Holes in metric-affine
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Extension to axisymmetric space-times - Plebanski-Damianski

@ We found a solution to OUR THEORY in the decoupling limit
|ziks] < 1 with x = (a,l, «) with additional torsion and nonmetricity
terms
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Extension to axisymmetric space-times - Plebanski-Damianski

@ We found a solution to OUR THEORY in the decoupling limit
|ziks| < 1 with z = (a,l, @) with additional torsion and nonmetricity
terms

Kd,e” — Kd,m(acos? +1)
r2 4+ (acos9 +1)2

Kd,e” — Kd,m (a7 + 1)

AR Q)

, wa(r ) = —

)

cotﬁ—'ycscﬂ)Z
- o o 9

w3(n'-")=—'<d,m\JK(i9)— ( )

(7‘2 + a2 — l2) cosﬁ+alsin219+2xl (acos¥ + 1)

wy(r,9d) =k
4 ) d,m r2+(acos19+l)2 v
Kd,eT [a sin? 9 + 21 (x — cos 19)]
- 72 + (acos¥ +1)2 ’
_9 e I Qr) o Q(r) o Kssin® )
T ot = —T7 g¢sin“ 9 =—-T ‘p"‘pz(T‘,ﬁ) =T ’07‘;)2(7‘,’[9) sin® 9 = T-k(’)(m,ns).

@ Similarly as electromagnetism, the torsion behaves as a
Coulomb-like quantity depending on a spin charge s and the
non-metricity on the dilation charge xg.
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Nonmetricity decomposition

@ Nonmetricity can be decomposed in the Weyl part plus a "traceless”
part:
Q)\,uu = gm/W)\ + Q‘)\uu :
where
]' 14
Wu = Z Q/u/ )

1 1
Q)\uu = g)\(,uAu) - Zg/JVAA =+ ggApa(qu) P74 ADvuv »
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Nonmetricity decomposition

@ Nonmetricity can be decomposed in the Weyl part plus a "traceless”
part:
Q)\uu = gul/W)\ + QAMV :

where
1
Wu = Z Q;w v )
1 1 e
Q)\uu = g)\(,uAV) - ZguVA)\ + gg)\po(qu) + O s
@ We defined a vector, and two traceless and pseudotraceless tensors
4 14
AM:§(Q HV_WM)’
y = = [ Qa v (34,2,

3
Q\pv = Q()\,uu) - g(;u/W)\) - Zg(yVAA) ’

Sebastian Bahamonde (*) Black Holes in metric-affine 32/42



The traceless part of nonmetricity and shears

o If this quantity is different to zero, when we parallel transport a vector,
not only its norm changes but also its angle.
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@ Shears: Deformations without changing the volume.
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The traceless part of nonmetricity and shears

o If this quantity is different to zero, when we parallel transport a vector,
not only its norm changes but also its angle.

o ltis invariant under shears transformations.
@ Shears: Deformations without changing the volume.

@ Up to now, there are not exact solutions with shears in MAG.
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MAG theory with shears

o Let us first consider a simple model where torsion is not propagating
and the traceless part of nonmetricity is dynamical:

5= d*zy/=g|— R+ 2fiB 0y RO

16
+2f, (Ruw) - R(W)) (RW) — R(W))] 7
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MAG theory with shears

o Let us first consider a simple model where torsion is not propagating
and the traceless part of nonmetricity is dynamical:

+2f2 (R(W) - R(uu)) (R(W) _ R(#”)ﬂ :

@ As can be seen, the propagation of the nonmetricity field described in
the action is carried out by the symmetric part of the curvature tensor
and its symmetric contraction:

- = 1
R()\p) py = v[uQ,u] A + 5 7 ;WQG AP )

I > = A = A
Riuw) = By = V@ ox = VaQuun™ = @Y AQ(up + Qap(uQu) ™
A
+ T)\p(,uQ py) )

which in turn constitute deviations from the third Bianchi of GR.
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Propagation of the traceless part

@ As can be seen, the propagation of the nonmetricity field described in
the action is carried out by the symmetric part of the curvature tensor
and its symmetric contraction:

~ = 1
R(Ap) py = V[VQ/J.] A + 5 T° /LVQO’ A )

Ry = Ry = V@ ox = VaQuun = @ 23Quyp + @2p(u@u)™
+ T)\p(uQApu) 5

which in turn constitute deviations from the third Bianchi of GR.
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Spherical symmetry with nonmetricity and torsion

@ Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 + #8 + #12 = #22):

‘CEQﬂV = ,CgT)‘NV = ﬁgQaMV =0 = ﬂgR)\pw, =0
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Spherical symmetry with nonmetricity and torsion

@ Metric, torsion and nonmetricity in spherically symmetric
space-times (#2 + #8 + #12 = #22):

,ngm, = ,CgT)‘m, = ,CgQ(w,, =0 = ‘C’ERAP#V =0
@ Nonmetricity now contains all the 12 dof:

Qut = q1(r), Qurr =q2(r), Qur = g3(r),

Qo9 = Qtpp csc? ) = qu(r), Qrt=g5(r), Qrrr=qe(r),
Qrir = q7(r),  Qrog = Qrepyp csc® 9 = gg(r),

Qoto = Qi csc® 9 = qo(r),  Quory = Qurp c5¢® 9 = quo(r)
Qute = — Qoo = qu1(r)sin?, Qury = — Qury = qi2(7) sin?,

whereas the metric and torsion are the same as before.
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q.. (containing
shears), so that:
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q.. (containing

shears), so that:
@ We eliminate the Weyl part of nonmetricity 1, = % Qv ¥ = 0 by setting

o) = T (20, war) + 204)
50) = L (2000 (r) + 2050)
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@ We are only interested in the traceless part of Q.. (containing
shears), so that:
@ We eliminate the Weyl part of nonmetricity 1, = % Qv ¥ = 0 by setting

o) = T (20, war) + 204)
50) = L (2000 (r) + 2050)

©Q We imposed N|,,j,, = 0 which is equivalent to T, = Quu)x:
— Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.
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©Q We imposed N|,,j,, = 0 which is equivalent to T, = Quu)x:
— Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.

@ We demand the corresponding torsion and nonmetricity scalars of the
solution to be regular.
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q.. (containing
shears), so that:
@ We eliminate the Weyl part of nonmetricity W, = % Qv ¥ = 0 by setting

\I/]_(’l‘)

) = N (2a0)wa0) + 2040r)
50) = L (2000 (r) + 2050)

©Q We imposed N|,,j,, = 0 which is equivalent to T, = Quu)x:
— Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.

@ We demand the corresponding torsion and nonmetricity scalars of the
solution to be regular.

o After following these three steps we end up with 2 dof (metric)+ 5 dof
(torsion/nonmetricity) which is only 7 dof.

Sebastian Bahamonde (*) Black Holes in metric-affine



New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fa=— %fl-
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@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fa=— %fl-

@ The form of ¢; and ¢; is involved. One component of nonmetricity is
arbitrary! (problem!)
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New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fa=— %fl-

@ The form of ¢; and ¢; is involved. One component of nonmetricity is
arbitrary! (problem!)
@ The metric behaves as
dr?
Wy (r)

ds® = Uy (r)dt* — — 72 (dH% + sin? 91d9§) .

with

where kg, is interpreted as a new charge, "shear charge”.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

o After finding the shear part alone, we found a theory having the first
solution (with spin+dilation) plus the second (with only shears).

Sebastian Bahamonde (*) Black Holes in metric-affine 39/42



Reissner-Nordstrom-like solutions with spin, dilation and shear charges

o After finding the shear part alone, we found a theory having the first
solution (with spin+dilation) plus the second (with only shears).

@ The action of the full model is

1

64

4 20s (R + Biy) (B9 + R1) 4 1843 Ry RO

S = | 4R = 6d1 Ry RNP) — 90y Ry RF 7

= 3d1R(,\p)u,,R()‘p)“y I 6d1R()\p)m,R(>‘”)pV 4+ 2 (261 = fl) R ,\HURP P =

+ 81 Ry RO — 2, (fz(w) - fz(w)) ( Rl _ g(;w))

+3(1 = 2a3) Tipuy T | d*ay/=g.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

o After finding the shear part alone, we found a theory having the first
solution (with spin+dilation) plus the second (with only shears).

@ The action of the full model is

1

64

+ 2d; (R[;w] + R[;w]) (R[w/] + R[Mu]) + 18d1R>\[pm/]R(}‘p)”V

S = | 4R = 6d1 Ry RNP) — 90y Ry RF 7

= 3d1R(,\p)u,,R()‘p)“y + 6d1R()\p)m,R(>\“)pV +2(2e1 — f1) R* )\HURP o
+8f1R(np) RO — 21 (R(W) - R(W)) (RW) - RW))

+3(1 = 2a3) Tipuy T | d*ay/=g.

@ When traceless part of nonmetricity is zero, the above action
coincides with the first one.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
is not so difficult to find that the solution for the full model.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
is not so difficult to find that the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free)
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
is not so difficult to find that the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free)

@ The solution gives us the following metric

dr? ‘
d32 = \Ill(’f') dt2 — \112(7-) _ ,,.2 (d@% + SlIl2 91d9§) '
with
Ui(r) =Wy(r) =1- Tm 4 4fs el:;d fikd, ,

having the three possible charges: spin, dilation and shear.
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Solution with the geometrical charges, cosmological constant and electromagnetic field

@ On the other hand, the solution can also be trivially generalised to
include the cosmological constant and Coulomb electromagnetic
fields with electric and magnetic charges ¢. and ¢.,, which are
decoupled from torsion under the assumption of the minimal coupling
principle. This natural extension is then described by a
Reissner-Nordstrom-de Sitter-like geometry

2m  dik2 —de1k? — 2f1k4 + @2 + 42, o Ar2

)\ =1—- —
(r) r + r2 3 7

which turns out to represent the broadest family of static and
spherically symmetric black hole solutions obtained in MAG so
far.

Sebastian Bahamonde (*) Black Holes in metric-affine



Conclusions and what do to next

@ We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.
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@ We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.
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Conclusions and what do to next

@ We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

@ We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

@ The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.
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@ Cosmology of the complete model: from inflation to dark energy.
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@ Perturbations of this solution: Is it stable? quasinormal modes?
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Conclusions and what do to next

@ We found the first solutions with dynamical torsion and nonmetricity.
First with the Weyl and then with the traceless part of nonmetricity.

@ We found the correspondence of Plebansky-Damianski solution in
our theory in the decoupling limit.

@ The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

@ It is worth studying:

@ Cosmology of the complete model: from inflation to dark energy.
@ Perturbations of this solution: Is it stable? quasinormal modes?

@ What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine
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