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Fundamental variables and characteristic tensors

In the most general metric-affine setting, the fundamental variables
are a metric gµν (10 comp.) as well as the coefficients Γ̃ρ

µν (64
comp.) of an affine connection.

The most general connection can be written as

Connection decomposition

Γ̃λ
µν = Γλ

µν+Nλ
µν =

Levi-Civita︷ ︸︸ ︷
Γλ

µν

+

Torsion part︷ ︸︸ ︷
1

2
T λ

µν − T(µ
λ
ν)+

Nonmetricity part︷ ︸︸ ︷
1

2
Qλ

µν −Q(µ
λ
ν) .

Curvature decomposition, torsion and nonmetricity

R̃λ
ρµν = Rλ

ρµν + 2∇[µ|N
λ
ρ|ν] + 2Nλ

σ[µ|N
σ
ρ|ν] ,

T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ ,

Q̃µνρ = ∇̃µgνρ = ∂µgνρ − Γ̃σ
νµgσρ − Γ̃σ

ρµgνσ .

Tildes=General, nothing=Riemannian → ∇µ(Levi-Civita), ∇̃µ(General)
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Decomposition into irreducible parts

Irreducible decomposition of the torsion tensor:

T λ
µν =

1

3

(
δλ νTµ − δλ µTν

)
+

1

6
ελ ρµνS

ρ + tλ µν ,

vector part Tµ = Tλ
µλ,

axial vector part Sµ = εµνρσT
νσρ,

tensor part tλ µν = Tλ
µν − 1

3

(
δλ νTµ − δλ µTν

)
− 1

6ε
λ
ρµνS

ρ.

Irreducible decomposition of the nonmetricity tensor:

Qλµν = Weyl part + Traceless part = gµνWλ +↗Qλµν ,

↗Qλµν =
1

2
(gλµΛν + gλνΛµ)−

1

4
gµνΛλ +

1

3
ελρσ(µΩν)

ρσ + qλµν .

Weyl vector Wµ = 1
4Qµν

ν ,
Second vector part Λµ = 4

9 (Q
ν
µν −Wµ),

First (pseudo)tensor part Ωλ
µν = −

[
εµνρσQρσλ + εµνρ λ

(
3
4Λρ −Wρ

)]
,

Second tensor part qλµν = Q(λµν) − g(µνWλ) − 3
4g(µνΛλ).
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Dynamics of metric-affine geometry

Gravitational action with dynamical torsion and nonmetricity:

S =

∫
d4x

√
−g

[
Lm − 1

16π
Lg(R̃, T ,Q)

]
.

Correspondence between geometry and matter:
δSg

δea ν
= 16πθa

ν ,

δSg

δωa
bν

= 16π∆a
bν .

Here θa
ν is the energy-momentum tensor (canonical) and ∆a

bν is
the hypermomentum density tensor.
Three independent contractions of the curvature tensor and only one
independent scalar curvature:

R̃µν = R̃λ
µλν , R̂µν = R̃µ

λ
νλ , R̃λ

λµν = 4∇[νWµ] ,

R̃ = R̃λρ
λρ .

GL(4, R) group allows the definition of a large number of scalars.
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MAG theory with shears

Let us first consider a simple model where torsion is not propagating
and the traceless part of nonmetricity is dynamical:

S =
1

16π

∫
d4x

√
−g

[
−R+ 2f1R̃(λρ)µνR̃

(λρ)µν

+ 2f2

(
R̃(µν) − R̂(µν)

)(
R̃(µν) − R̂(µν)

)]
,

As can be seen, the propagation of the nonmetricity field described in
the action is carried out by the symmetric part of the curvature tensor
and its symmetric contraction:

R̃(λρ)
µν = ∇̃[νQµ]

λρ +
1

2
T σ

µνQσ
λρ ,

R̃(µν) − R̂(µν) = ∇̃(µQ
λ
ν)λ − ∇̃λQ(µν)

λ −Qλρ
λQ(µν)ρ +Qλρ(µQν)

λρ

+ Tλρ(µQ
λρ

ν) ,

which in turn constitute deviations from the third Bianchi of GR.
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λQ(µν)ρ +Qλρ(µQν)

λρ

+ Tλρ(µQ
λρ

ν) ,

which in turn constitute deviations from the third Bianchi of GR.
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Spherical symmetry in metric-affine geometry

Metric, torsion and nonmetricity tensors in symmetric space-times:

Lξgµν = LξT
λ
µν = LξQ

λ
µν = 0 =⇒ LξR̃

λ
ρµν = 0 .

Killing vectors in static and spherically symmetric space-times:

η0 = ∂t ,

ξ1 = sinφ∂ϑ + cotϑ cosφ∂φ ,

ξ2 = − cosφ∂ϑ + cotϑ sinφ∂φ ,

ξ3 = − ∂φ .

Metric:

#10 dof → #2 dof
{
ds2 = Ψ1(r) dt

2 − dr2

Ψ2(r)
− r2

(
dϑ2 + sinϑ2dφ2

)
.
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Spherical symmetry in metric-affine geometry

Torsion contains #8 dof:

T t
tr = t1(r) , T r

tr = t2(r) , Tϑ
tϑ = Tφ

tφ = t3(r) , Tϑ
rϑ = Tφ

rφ = t4(r) ,

Tϑ
tφ = Tφ

ϑt sin
2 ϑ = t5(r) sinϑ , Tϑ

rφ = Tφ
ϑr sin

2 ϑ = t6(r) sinϑ ,

T t
ϑφ = t7(r) sinϑ , T r

ϑφ = t8(r) sinϑ .

Nonmetricity contains #12 dof:

Qttt = q1(r) , Qtrr = q2(r) , Qttr = q3(r) ,

Qtϑϑ = Qtφφ csc2 ϑ = q4(r) , Qrtt = q5(r) , Qrrr = q6(r) ,

Qrtr = q7(r) , Qrϑϑ = Qrφφ csc2 ϑ = q8(r) ,

Qϑtϑ = Qφtφ csc2 ϑ = q9(r) , Qϑrϑ = Qφrφ csc2 ϑ = q10(r) ,

Qϑtφ = −Qφtϑ = q11(r) sinϑ , Qϑrφ = −Qφrϑ = q12(r) sinϑ .

This means that not only the field equations are very difficult to treat
but we need to find a solution of a system with
#2(metric) + #8(torsion) + #12(nonmetricity) = 22 dof!
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How to find a solution with all of these dof?

We are only interested in the traceless part of Qαµν (containing
shears), so that:

1 We eliminate the Weyl part of nonmetricity Wµ = 1
4 Qµν

ν = 0 by setting

q1(r) =
Ψ1(r)

r2
(
r2q2(r)Ψ2(r) + 2q4(r)

)
,

q5(r) =
Ψ1(r)

r2
(
r2q6(r)Ψ2(r) + 2q8(r)

)
.

2 We imposed N[λρ]µ = 0 which is equivalent to Tλµν = Q[µν]λ:
→ Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.

3 We demand the corresponding torsion and nonmetricity scalars of the
solution to be regular.

After following these three steps we end up with 2 dof (metric)+ 5 dof
(torsion/nonmetricity) which is only 7 dof.
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New solution only with shears

By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

f2 = − 1

4
f1.

The metric behaves as

Solution - metric part

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
,

Ψ1(r) = Ψ2(r) = 1− 2m

r
−

2f1κ
2
sh

r2
.

Here, κsh is interpreted as a new charge, ”shear charge”.
See our paper to see the form of qi and ti. One component of
nonmetricity is arbitrary (problem?).
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Reissner-Nordström-like solutions with spin, dilation and shear charges

After finding the shear part alone, we found a theory containing our
previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second
(with only shears).

The action of the full model is

S =
1

64π

∫ [
− 4R− 6d1R̃λ[ρµν]R̃

λ[ρµν] − 9d1R̃λ[ρµν]R̃
µ[λνρ]

+ 2d1

(
R̃[µν] + R̂[µν]

)(
R̃[µν] + R̂[µν]

)
+ 18d1R̃λ[ρµν]R̃

(λρ)µν

− 3d1R̃(λρ)µνR̃
(λρ)µν + 6d1R̃(λρ)µνR̃

(λµ)ρν + 2 (2e1 − f1) R̃
λ
λµνR̃

ρ
ρ
µν

+ 8f1R̃(λρ)µνR̃
(λρ)µν − 2f1

(
R̃(µν) − R̂(µν)

)(
R̃(µν) − R̂(µν)

)
+ 3 (1− 2a2)T[λµν]T

[λµν]
]
d4x

√
−g .

When traceless part of nonmetricity is zero, the above action
coincides with our previous study.
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Reissner-Nordström-like solutions with spin, dilation and shear charges

Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free). See our paper to see the form of qi, ti and the field strength
tensors in the irreducible modes.
The solution gives us the following metric

Solution General - metric part

ds2 = Ψ1(r) dt
2 − dr2

Ψ2(r)
− r2

(
dθ21 + sin2 θ1dθ

2
2

)
,

Ψ1(r) = Ψ2(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d − 2f1κ

2
sh

r2
,

having the three possible charges of MAG: spin, dilation and shear.
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Solution with the geometrical charges, cosmological constant and electromagnetic field

On the other hand, the solution can also be trivially generalised to
include the cosmological constant and Coulomb electromagnetic fields
with electric and magnetic charges qe and qm, which are decoupled
from torsion under the assumption of the minimal coupling principle.
This natural extension is then described by a Reissner-Nordström-de
Sitter-like geometry

Solution General - metric part

Ψ(r) = 1− 2m

r
+

d1κ
2
s − 4e1κ

2
d − 2f1κ

2
sh + q2e + q2m

r2
+

Λ

3
r2 ,

which turns out to represent the broadest family of static and
spherically symmetric black hole solutions obtained in MAG so
far.
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What do these charges physically represent? - Torsion

Torsion part T λ
µν :

1 Intrinsic spin generates gravitation. This effect does not exist in GR.

2 We know that the spin is a fundamental property of particles. Since
their masses contribute to gravity, why their spin do not in GR?

3 The solution is in vacuum and a charge κs appears (spin charge).
Analogue to the case of Schwarzschild where the mass M appears.

4 We expect that the spin charge might be important in certain
astrophysical scenarios such as: highly mangnetized neutron stars;
supermassive black holes with endowed spin.
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What do these charges physically represent? - Nonmetricity

Nonmetricity part - only Weyl Wµ:

1 Intrinsic dilations generates gravitation. This effect does not exist in
GR.

2 dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

3 Weyl part of nonmetricity is ”scale invariant”

Nonmetricity part - Traceless part ↗Qλµν :

1 Intrinsic shears generates gravitation. This effect does not exist in GR.

2 Shears: Deformations without changing the volume.

Solution: κd and κsh appear which are the dilation and shear
charges. Analogue to the case of Schwarzschild M .
Do all particles in nature have different dilations and shears? are
these properties important in particle physics?
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Conclusions and what do to next

We found the first solution with the traceless part of nonmetricity
having a dynamical role where the shear charge appears in the
metric.

The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

It is worth studying:

1 Cosmology of the complete model: from inflation to dark energy.

2 Perturbations of this solution: Is it stable? quasinormal modes?

3 What is the role of dilations/shears in particle physics?
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