New black hole solutions with a dynamical traceless nonmetricity tensor in Metric-Affine

 Gravity

 Gravity}

Sebastián Bahamonde

JSPS Postdoctoral Researcher at Tokyo Institute of Technology, Japan

JGRG31, 27/Oct/2022
Based on JCAP 09 (2020), 057 and 2210.05998; Jointly with Jorge Gigante Valcarcel.

Fundamental variables and characteristic tensors

- In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu \nu}\left(10\right.$ comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}{ }_{\mu \nu}(64$ comp.) of an affine connection.

Fundamental variables and characteristic tensors

- In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu \nu}\left(10\right.$ comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}{ }_{\mu \nu}(64$ comp.) of an affine connection.
- The most general connection can be written as

Fundamental variables and characteristic tensors

- In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu \nu}\left(10\right.$ comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}{ }_{\mu \nu}$ (64 comp.) of an affine connection.
- The most general connection can be written as

Connection decomposition

$\tilde{\Gamma}^{\lambda}{ }_{\mu \nu}=\Gamma^{\lambda}{ }_{\mu \nu}+N^{\lambda}{ }_{\mu \nu}=\overbrace{\Gamma^{\lambda}{ }_{\mu \nu}}^{\text {Levi-Civita }}$

Fundamental variables and characteristic tensors

- In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu \nu}\left(10\right.$ comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}{ }_{\mu \nu}$ (64 comp.) of an affine connection.
- The most general connection can be written as

Connection decomposition

$\tilde{\Gamma}^{\lambda}{ }_{\mu \nu}=\Gamma^{\lambda}{ }_{\mu \nu}+N^{\lambda}{ }_{\mu \nu}=\overbrace{\Gamma^{\lambda}{ }_{\mu \nu}}^{\text {Levi-Civita }}$

Fundamental variables and characteristic tensors

- In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu \nu}\left(10\right.$ comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}{ }_{\mu \nu}$ (64 comp.) of an affine connection.
- The most general connection can be written as

Connection decomposition

$\tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}+N_{\mu \nu}^{\lambda}=\overbrace{\Gamma_{\mu \nu}^{\lambda}}^{\text {Levi-Civita }}+\overbrace{\frac{1}{2} T_{\mu \nu}^{\lambda}-T_{(\mu}{ }_{\mu}{ }_{\nu)}}^{\text {Torsion part }}$

Fundamental variables and characteristic tensors

- In the most general metric-affine setting, the fundamental variables are a metric $g_{\mu \nu}\left(10\right.$ comp.) as well as the coefficients $\tilde{\Gamma}^{\rho}{ }_{\mu \nu}$ (64 comp.) of an affine connection.
- The most general connection can be written as

Connection decomposition

Curvature decomposition, torsion and nonmetricity

$$
\begin{aligned}
\tilde{R}^{\lambda}{ }_{\rho \mu \nu} & =R^{\lambda}{ }_{\rho \mu \nu}+2 \nabla_{[\mu \mid} N^{\lambda}{ }_{\rho \mid \nu]}+2 N^{\lambda}{ }_{\sigma[\mu \mid} N^{\sigma}{ }_{\rho \mid \nu]}, \\
\tilde{T}^{\mu}{ }_{\nu \rho} & =\tilde{\Gamma}^{\mu}{ }_{\rho \nu}-\tilde{\Gamma}^{\mu}{ }_{\nu \rho}, \\
\tilde{Q}_{\mu \nu \rho} & =\tilde{\nabla}_{\mu} g_{\nu \rho}=\partial_{\mu} g_{\nu \rho}-\tilde{\Gamma}^{\sigma}{ }_{\nu \mu} g_{\sigma \rho}-\tilde{\Gamma}^{\sigma}{ }_{\rho \mu} g_{\nu \sigma} .
\end{aligned}
$$

Tildes=General, nothing=Riemannian $\rightarrow \nabla_{\mu}$ (Levi-Civita), $\tilde{\nabla}_{\mu}$ (General)

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,
- tensor part $t^{\lambda}{ }_{\mu \nu}=T^{\lambda}{ }_{\mu \nu}-\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)-\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}$.

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,
- tensor part $t^{\lambda}{ }_{\mu \nu}=T^{\lambda}{ }_{\mu \nu}-\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)-\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}$.
- Irreducible decomposition of the nonmetricity tensor:

$$
\begin{aligned}
& Q_{\lambda \mu \nu}=\text { Weyl part }+ \text { Traceless part }=g_{\mu \nu} W_{\lambda}+\not_{\lambda \mu \nu} \\
& \mathscr{Q}_{\lambda \mu \nu}=\frac{1}{2}\left(g_{\lambda \mu} \Lambda_{\nu}+g_{\lambda \nu} \Lambda_{\mu}\right)-\frac{1}{4} g_{\mu \nu} \Lambda_{\lambda}+\frac{1}{3} \varepsilon_{\lambda \rho \sigma(\mu} \Omega_{\nu)}^{\rho \sigma}+q_{\lambda \mu \nu}
\end{aligned}
$$

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,
- tensor part $t^{\lambda}{ }_{\mu \nu}=T^{\lambda}{ }_{\mu \nu}-\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)-\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}$.
- Irreducible decomposition of the nonmetricity tensor:

$$
\begin{aligned}
Q_{\lambda \mu \nu} & =\text { Weyl part }+ \text { Traceless part }=g_{\mu \nu} W_{\lambda}+Q_{\lambda \mu \nu} \\
Q_{\lambda \mu \nu} & =\frac{1}{2}\left(g_{\lambda \mu} \Lambda_{\nu}+g_{\lambda \nu} \Lambda_{\mu}\right)-\frac{1}{4} g_{\mu \nu} \Lambda_{\lambda}+\frac{1}{3} \varepsilon_{\lambda \rho \sigma(\mu} \Omega_{\nu)}
\end{aligned}
$$

- Weyl vector $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}$,

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,
- tensor part $t^{\lambda}{ }_{\mu \nu}=T^{\lambda}{ }_{\mu \nu}-\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)-\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}$.
- Irreducible decomposition of the nonmetricity tensor:

$$
\begin{aligned}
Q_{\lambda \mu \nu} & =\text { Weyl part }+ \text { Traceless part }=g_{\mu \nu} W_{\lambda}+Q_{\lambda \mu \nu} \\
Q_{\lambda \mu \nu} & =\frac{1}{2}\left(g_{\lambda \mu} \Lambda_{\nu}+g_{\lambda \nu} \Lambda_{\mu}\right)-\frac{1}{4} g_{\mu \nu} \Lambda_{\lambda}+\frac{1}{3} \varepsilon_{\lambda \rho \sigma(\mu} \Omega_{\nu)}
\end{aligned}
$$

- Weyl vector $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}$,
- Second vector part $\Lambda_{\mu}=\frac{4}{9}\left(Q^{\nu}{ }_{\mu \nu}-W_{\mu}\right)$,

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,
- tensor part $t^{\lambda}{ }_{\mu \nu}=T^{\lambda}{ }_{\mu \nu}-\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)-\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}$.
- Irreducible decomposition of the nonmetricity tensor:

$$
\begin{aligned}
Q_{\lambda \mu \nu} & =\text { Weyl part }+ \text { Traceless part }=g_{\mu \nu} W_{\lambda}+Q_{\lambda \mu \nu} \\
Q_{\lambda \mu \nu} & =\frac{1}{2}\left(g_{\lambda \mu} \Lambda_{\nu}+g_{\lambda \nu} \Lambda_{\mu}\right)-\frac{1}{4} g_{\mu \nu} \Lambda_{\lambda}+\frac{1}{3} \varepsilon_{\lambda \rho \sigma(\mu} \Omega_{\nu)}{ }^{\rho \sigma}+q_{\lambda \mu \nu}
\end{aligned}
$$

- Weyl vector $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}$,
- Second vector part $\Lambda_{\mu}=\frac{4}{9}\left(Q^{\nu}{ }_{\mu \nu}-W_{\mu}\right)$,
- First (pseudo)tensor part $\Omega_{\lambda}{ }^{\mu \nu}=-\left[\varepsilon^{\mu \nu \rho \sigma} Q_{\rho \sigma \lambda}+\varepsilon^{\mu \nu \rho}{ }_{\lambda}\left(\frac{3}{4} \Lambda_{\rho}-W_{\rho}\right)\right]$,

Decomposition into irreducible parts

- Irreducible decomposition of the torsion tensor:

$$
T^{\lambda}{ }_{\mu \nu}=\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)+\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}+t^{\lambda}{ }_{\mu \nu},
$$

- vector part $T_{\mu}=T^{\lambda}{ }_{\mu \lambda}$,
- axial vector part $S_{\mu}=\varepsilon_{\mu \nu \rho \sigma} T^{\nu \sigma \rho}$,
- tensor part $t^{\lambda}{ }_{\mu \nu}=T^{\lambda}{ }_{\mu \nu}-\frac{1}{3}\left(\delta^{\lambda}{ }_{\nu} T_{\mu}-\delta^{\lambda}{ }_{\mu} T_{\nu}\right)-\frac{1}{6} \varepsilon^{\lambda}{ }_{\rho \mu \nu} S^{\rho}$.
- Irreducible decomposition of the nonmetricity tensor:

$$
\begin{aligned}
Q_{\lambda \mu \nu} & =\text { Weyl part }+ \text { Traceless part }=g_{\mu \nu} W_{\lambda}+Q_{\lambda \mu \nu} \\
Q_{\lambda \mu \nu} & =\frac{1}{2}\left(g_{\lambda \mu} \Lambda_{\nu}+g_{\lambda \nu} \Lambda_{\mu}\right)-\frac{1}{4} g_{\mu \nu} \Lambda_{\lambda}+\frac{1}{3} \varepsilon_{\lambda \rho \sigma(\mu} \Omega_{\nu)}{ }^{\rho \sigma}+q_{\lambda \mu \nu}
\end{aligned}
$$

- Weyl vector $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}$,
- Second vector part $\Lambda_{\mu}=\frac{4}{9}\left(Q^{\nu}{ }_{\mu \nu}-W_{\mu}\right)$,
- First (pseudo)tensor part $\Omega_{\lambda}{ }^{\mu \nu}=-\left[\varepsilon^{\mu \nu \rho \sigma} Q_{\rho \sigma \lambda}+\varepsilon^{\mu \nu \rho}{ }_{\lambda}\left(\frac{3}{4} \Lambda_{\rho}-W_{\rho}\right)\right]$,
- Second tensor part $q_{\lambda \mu \nu}=Q_{(\lambda \mu \nu)}-g_{(\mu \nu} W_{\lambda)}-\frac{3}{4} g_{(\mu \nu} \Lambda_{\lambda)}$.

Dynamics of metric-affine geometry

- Gravitational action with dynamical torsion and nonmetricity:

$$
S=\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{m}-\frac{1}{16 \pi} \mathcal{L}_{g}(\tilde{\mathcal{R}}, \mathcal{T}, \mathcal{Q})\right]
$$

Dynamics of metric-affine geometry

- Gravitational action with dynamical torsion and nonmetricity:

$$
S=\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{m}-\frac{1}{16 \pi} \mathcal{L}_{g}(\tilde{\mathcal{R}}, \mathcal{T}, \mathcal{Q})\right]
$$

- Correspondence between geometry and matter:

$$
\begin{aligned}
\frac{\delta S_{g}}{\delta e^{a}} & =16 \pi \theta_{a}^{\nu} \\
\frac{\delta S_{g}}{\delta \omega^{a}{ }_{b \nu}} & =16 \pi \Delta_{a}{ }^{b \nu}
\end{aligned}
$$

Here $\theta_{a}{ }^{\nu}$ is the energy-momentum tensor (canonical) and $\Delta_{a}{ }^{b \nu}$ is the hypermomentum density tensor.

Dynamics of metric-affine geometry

- Gravitational action with dynamical torsion and nonmetricity:

$$
S=\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{m}-\frac{1}{16 \pi} \mathcal{L}_{g}(\tilde{\mathcal{R}}, \mathcal{T}, \mathcal{Q})\right]
$$

- Correspondence between geometry and matter:

$$
\begin{aligned}
\frac{\delta S_{g}}{\delta e^{a}} & =16 \pi \theta_{a}^{\nu} \\
\frac{\delta S_{g}}{\delta \omega^{a}{ }_{b \nu}} & =16 \pi \Delta_{a}{ }^{b \nu}
\end{aligned}
$$

Here $\theta_{a}{ }^{\nu}$ is the energy-momentum tensor (canonical) and $\Delta_{a}{ }^{b \nu}$ is the hypermomentum density tensor.

- Three independent contractions of the curvature tensor and only one independent scalar curvature:

$$
\begin{aligned}
\tilde{R}_{\mu \nu} & =\tilde{R}^{\lambda}{ }_{\mu \lambda \nu}, \quad \hat{R}_{\mu \nu}=\tilde{R}_{\mu}{ }^{\lambda}{ }_{\nu \lambda}, \quad \tilde{R}^{\lambda}{ }_{\lambda \mu \nu}=4 \nabla_{[\nu} W_{\mu]}, \\
\tilde{R} & =\tilde{R}^{\lambda \rho}{ }_{\lambda \rho} .
\end{aligned}
$$

Dynamics of metric-affine geometry

- Gravitational action with dynamical torsion and nonmetricity:

$$
S=\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{m}-\frac{1}{16 \pi} \mathcal{L}_{g}(\tilde{\mathcal{R}}, \mathcal{T}, \mathcal{Q})\right]
$$

- Correspondence between geometry and matter:

$$
\begin{aligned}
\frac{\delta S_{g}}{\delta e^{a}} & =16 \pi \theta_{a}^{\nu} \\
\frac{\delta S_{g}}{\delta \omega^{a}{ }_{b \nu}} & =16 \pi \Delta_{a}^{b \nu}
\end{aligned}
$$

Here $\theta_{a}{ }^{\nu}$ is the energy-momentum tensor (canonical) and $\Delta_{a}{ }^{b \nu}$ is the hypermomentum density tensor.

- Three independent contractions of the curvature tensor and only one independent scalar curvature:

$$
\begin{aligned}
\tilde{R}_{\mu \nu} & =\tilde{R}^{\lambda}{ }_{\mu \lambda \nu}, \quad \hat{R}_{\mu \nu}=\tilde{R}_{\mu}{ }^{\lambda}{ }_{\nu \lambda}, \quad \tilde{R}^{\lambda}{ }_{\lambda \mu \nu}=4 \nabla_{[\nu} W_{\mu]}, \\
\tilde{R} & =\tilde{R}^{\lambda \rho}{ }_{\lambda \rho} .
\end{aligned}
$$

- $G L(4, R)$ group allows the definition of a large number of scalars.

MAG theory with shears

- Let us first consider a simple model where torsion is not propagating and the traceless part of nonmetricity is dynamical:

$$
\begin{aligned}
S=\frac{1}{16 \pi} \int d^{4} x & \sqrt{-g}\left[-R+2 f_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \rho) \mu \nu}\right. \\
& \left.+2 f_{2}\left(\tilde{R}_{(\mu \nu)}-\hat{R}_{(\mu \nu)}\right)\left(\tilde{R}^{(\mu \nu)}-\hat{R}^{(\mu \nu)}\right)\right]
\end{aligned}
$$

MAG theory with shears

- Let us first consider a simple model where torsion is not propagating and the traceless part of nonmetricity is dynamical:

$$
\begin{aligned}
& S=\frac{1}{16 \pi} \int d^{4} x \sqrt{-g}\left[-R+2 f_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \rho) \mu \nu}\right. \\
&\left.+2 f_{2}\left(\tilde{R}_{(\mu \nu)}-\hat{R}_{(\mu \nu)}\right)\left(\tilde{R}^{(\mu \nu)}-\hat{R}^{(\mu \nu)}\right)\right],
\end{aligned}
$$

- As can be seen, the propagation of the nonmetricity field described in the action is carried out by the symmetric part of the curvature tensor and its symmetric contraction:

$$
\begin{aligned}
\tilde{R}^{(\lambda \rho)}{ }_{\mu \nu} & =\tilde{\nabla}_{[\nu} Q_{\mu]}{ }^{\lambda \rho}+\frac{1}{2} T^{\sigma}{ }_{\mu \nu} Q_{\sigma}{ }^{\lambda \rho}, \\
\tilde{R}_{(\mu \nu)}-\hat{R}_{(\mu \nu)} & =\tilde{\nabla}_{(\mu} Q^{\lambda}{ }_{\nu) \lambda}-\tilde{\nabla}_{\lambda} Q_{(\mu \nu)}{ }^{\lambda}-Q^{\lambda \rho}{ }_{\lambda} Q_{(\mu \nu) \rho}+Q_{\lambda \rho(\mu} Q_{\nu)}{ }^{\lambda \rho} \\
& +T_{\lambda \rho(\mu} Q^{\lambda \rho}{ }_{\nu)},
\end{aligned}
$$

which in turn constitute deviations from the third Bianchi of GR.

Spherical symmetry in metric-affine geometry

- Metric, torsion and nonmetricity tensors in symmetric space-times:

$$
\mathcal{L}_{\xi} g_{\mu \nu}=\mathcal{L}_{\xi} T^{\lambda}{ }_{\mu \nu}=\mathcal{L}_{\xi} Q^{\lambda}{ }_{\mu \nu}=0 \Longrightarrow \mathcal{L}_{\xi} \tilde{R}^{\lambda}{ }_{\rho \mu \nu}=0 .
$$

Spherical symmetry in metric-affine geometry

- Metric, torsion and nonmetricity tensors in symmetric space-times:

$$
\mathcal{L}_{\xi} g_{\mu \nu}=\mathcal{L}_{\xi} T^{\lambda}{ }_{\mu \nu}=\mathcal{L}_{\xi} Q^{\lambda}{ }_{\mu \nu}=0 \Longrightarrow \mathcal{L}_{\xi} \tilde{R}^{\lambda}{ }_{\rho \mu \nu}=0 .
$$

- Killing vectors in static and spherically symmetric space-times:

$$
\begin{aligned}
& \eta_{0}=\partial_{t} \\
& \xi_{1}=\sin \varphi \partial_{\vartheta}+\cot \vartheta \cos \varphi \partial_{\varphi} \\
& \xi_{2}=-\cos \varphi \partial_{\vartheta}+\cot \vartheta \sin \varphi \partial_{\varphi} \\
& \xi_{3}=-\partial_{\varphi}
\end{aligned}
$$

Spherical symmetry in metric-affine geometry

- Metric, torsion and nonmetricity tensors in symmetric space-times:

$$
\mathcal{L}_{\xi} g_{\mu \nu}=\mathcal{L}_{\xi} T^{\lambda}{ }_{\mu \nu}=\mathcal{L}_{\xi} Q^{\lambda}{ }_{\mu \nu}=0 \Longrightarrow \mathcal{L}_{\xi} \tilde{R}^{\lambda}{ }_{\rho \mu \nu}=0 .
$$

- Killing vectors in static and spherically symmetric space-times:

$$
\begin{aligned}
& \eta_{0}=\partial_{t}, \\
& \xi_{1}=\sin \varphi \partial_{\vartheta}+\cot \vartheta \cos \varphi \partial_{\varphi}, \\
& \xi_{2}=-\cos \varphi \partial_{\vartheta}+\cot \vartheta \sin \varphi \partial_{\varphi}, \\
& \xi_{3}=-\partial_{\varphi} .
\end{aligned}
$$

- Metric:

$$
\# 10 \operatorname{dof} \rightarrow \# 2 \operatorname{dof}\left\{d s^{2}=\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \vartheta^{2}+\sin \vartheta^{2} d \varphi^{2}\right) .\right.
$$

Spherical symmetry in metric-affine geometry

- Torsion contains \#8 dof:

$$
\begin{aligned}
T^{t}{ }_{t r} & =t_{1}(r), \quad T^{r}{ }_{t r}=t_{2}(r), \quad T^{\vartheta}{ }_{t \vartheta}=T^{\varphi}{ }_{t \varphi}=t_{3}(r), \quad T^{\vartheta}{ }_{r \vartheta}=T^{\varphi}{ }_{r \varphi}=t_{4}(r), \\
T^{\vartheta}{ }_{t \varphi} & =T^{\varphi}{ }_{\vartheta t} \sin ^{2} \vartheta=t_{5}(r) \sin \vartheta, \quad T^{\vartheta}{ }_{r \varphi}=T^{\varphi}{ }_{\vartheta r} \sin ^{2} \vartheta=t_{6}(r) \sin \vartheta, \\
T^{t}{ }_{\vartheta \varphi} & =t_{7}(r) \sin \vartheta, \quad T^{r}{ }_{\vartheta \varphi}=t_{8}(r) \sin \vartheta .
\end{aligned}
$$

Spherical symmetry in metric-affine geometry

- Torsion contains \#8 dof:

$$
\begin{aligned}
T^{t}{ }_{t r} & =t_{1}(r), \quad T^{r}{ }_{t r}=t_{2}(r), \quad T^{\vartheta}{ }_{t \vartheta}=T^{\varphi}{ }_{t \varphi}=t_{3}(r), \quad T^{\vartheta}{ }_{r \vartheta}=T^{\varphi}{ }_{r \varphi}=t_{4}(r), \\
T^{\vartheta}{ }_{t \varphi} & =T^{\varphi}{ }_{\vartheta t} \sin ^{2} \vartheta=t_{5}(r) \sin \vartheta, \quad T^{\vartheta}{ }_{r \varphi}=T^{\varphi}{ }_{\vartheta r} \sin ^{2} \vartheta=t_{6}(r) \sin \vartheta, \\
T^{t}{ }_{\vartheta \varphi} & =t_{7}(r) \sin \vartheta, \quad T^{r}{ }_{\vartheta \varphi}=t_{8}(r) \sin \vartheta .
\end{aligned}
$$

- Nonmetricity contains \#12 dof:

$$
\begin{aligned}
Q_{t t t} & =q_{1}(r), \quad Q_{t r r}=q_{2}(r), \quad Q_{t t r}=q_{3}(r), \\
Q_{t \vartheta \vartheta} & =Q_{t \varphi \varphi} \csc ^{2} \vartheta=q_{4}(r), \quad Q_{r t t}=q_{5}(r), \quad Q_{r r r}=q_{6}(r), \\
Q_{r t r} & =q_{7}(r), \quad Q_{r \vartheta \vartheta}=Q_{r \varphi \varphi} \csc ^{2} \vartheta=q_{8}(r), \\
Q_{\vartheta t \vartheta} & =Q_{\varphi t \varphi} \csc ^{2} \vartheta=q_{9}(r), \quad Q_{\vartheta r \vartheta}=Q_{\varphi r \varphi} \csc ^{2} \vartheta=q_{10}(r), \\
Q_{\vartheta t \varphi} & =-Q_{\varphi t \vartheta}=q_{11}(r) \sin \vartheta, \quad Q_{\vartheta r \varphi}=-Q_{\varphi r \vartheta}=q_{12}(r) \sin \vartheta .
\end{aligned}
$$

Spherical symmetry in metric-affine geometry

- Torsion contains \#8 dof:

$$
\begin{aligned}
T^{t}{ }_{t r} & =t_{1}(r), \quad T^{r}{ }_{t r}=t_{2}(r), \quad T^{\vartheta}{ }_{t \vartheta}=T^{\varphi}{ }_{t \varphi}=t_{3}(r), \quad T^{\vartheta}{ }_{r \vartheta}=T^{\varphi}{ }_{r \varphi}=t_{4}(r), \\
T^{\vartheta}{ }_{t \varphi} & =T^{\varphi}{ }_{\vartheta t} \sin ^{2} \vartheta=t_{5}(r) \sin \vartheta, \quad T^{\vartheta}{ }_{r \varphi}=T^{\varphi}{ }_{\vartheta r} \sin ^{2} \vartheta=t_{6}(r) \sin \vartheta, \\
T^{t}{ }_{\vartheta \varphi} & =t_{7}(r) \sin \vartheta, \quad T^{r}{ }_{\vartheta \varphi}=t_{8}(r) \sin \vartheta .
\end{aligned}
$$

- Nonmetricity contains \#12 dof:

$$
\begin{aligned}
Q_{t t t} & =q_{1}(r), \quad Q_{t r r}=q_{2}(r), \quad Q_{t t r}=q_{3}(r), \\
Q_{t \vartheta \vartheta} & =Q_{t \varphi \varphi} \csc ^{2} \vartheta=q_{4}(r), \quad Q_{r t t}=q_{5}(r), \quad Q_{r r r}=q_{6}(r), \\
Q_{r t r} & =q_{7}(r), \quad Q_{r \vartheta \vartheta}=Q_{r \varphi \varphi} \csc ^{2} \vartheta=q_{8}(r), \\
Q_{\vartheta t \vartheta} & =Q_{\varphi t \varphi} \csc ^{2} \vartheta=q_{9}(r), \quad Q_{\vartheta r \vartheta}=Q_{\varphi r \varphi} \csc ^{2} \vartheta=q_{10}(r), \\
Q_{\vartheta t \varphi} & =-Q_{\varphi t \vartheta}=q_{11}(r) \sin \vartheta, \quad Q_{\vartheta r \varphi}=-Q_{\varphi r \vartheta}=q_{12}(r) \sin \vartheta .
\end{aligned}
$$

- This means that not only the field equations are very difficult to treat but we need to find a solution of a system with $\# 2($ metric $)+\# 8($ torsion $)+\# 12($ nonmetricity $)=22$ dof!

How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha \mu \nu}$ (containing shears), so that:

How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha \mu \nu}$ (containing shears), so that:
(We eliminate the Weyl part of nonmetricity $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}=0$ by setting

$$
\begin{aligned}
& q_{1}(r)=\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{2}(r) \Psi_{2}(r)+2 q_{4}(r)\right) \\
& q_{5}(r)=\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{6}(r) \Psi_{2}(r)+2 q_{8}(r)\right)
\end{aligned}
$$

How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha \mu \nu}$ (containing shears), so that:
(1) We eliminate the Weyl part of nonmetricity $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}=0$ by setting

$$
\begin{aligned}
q_{1}(r) & =\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{2}(r) \Psi_{2}(r)+2 q_{4}(r)\right) \\
q_{5}(r) & =\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{6}(r) \Psi_{2}(r)+2 q_{8}(r)\right)
\end{aligned}
$$

(2) We imposed $N_{[\lambda \rho] \mu}=0$ which is equivalent to $T_{\lambda \mu \nu}=Q_{[\mu \nu] \lambda}$:
\rightarrow Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the symmetric traceless part of the Lie algebra.

How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha \mu \nu}$ (containing shears), so that:
(We eliminate the Weyl part of nonmetricity $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}=0$ by setting

$$
\begin{aligned}
q_{1}(r) & =\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{2}(r) \Psi_{2}(r)+2 q_{4}(r)\right) \\
q_{5}(r) & =\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{6}(r) \Psi_{2}(r)+2 q_{8}(r)\right)
\end{aligned}
$$

(2) We imposed $N_{[\lambda \rho] \mu}=0$ which is equivalent to $T_{\lambda \mu \nu}=Q_{[\mu \nu] \lambda}$:
\rightarrow Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the symmetric traceless part of the Lie algebra.
(3) We demand the corresponding torsion and nonmetricity scalars of the solution to be regular.

How to find a solution with all of these dof?

- We are only interested in the traceless part of $Q_{\alpha \mu \nu}$ (containing shears), so that:
(We eliminate the Weyl part of nonmetricity $W_{\mu}=\frac{1}{4} Q_{\mu \nu}{ }^{\nu}=0$ by setting

$$
\begin{aligned}
& q_{1}(r)=\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{2}(r) \Psi_{2}(r)+2 q_{4}(r)\right) \\
& q_{5}(r)=\frac{\Psi_{1}(r)}{r^{2}}\left(r^{2} q_{6}(r) \Psi_{2}(r)+2 q_{8}(r)\right)
\end{aligned}
$$

(2) We imposed $N_{[\lambda \rho] \mu}=0$ which is equivalent to $T_{\lambda \mu \nu}=Q_{[\mu \nu] \lambda}$:
\rightarrow Shear transformations in the general linear group involves the part of the anholonomic connection describing a shear current or charge to take values in the symmetric traceless part of the Lie algebra.
(3) We demand the corresponding torsion and nonmetricity scalars of the solution to be regular.

- After following these three steps we end up with 2 dof (metric)+ 5 dof (torsion/nonmetricity) which is only 7 dof.

New solution only with shears

- By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

$$
f_{2}=-\frac{1}{4} f_{1}
$$

New solution only with shears

- By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

$$
f_{2}=-\frac{1}{4} f_{1}
$$

- The metric behaves as

New solution only with shears

- By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

$$
f_{2}=-\frac{1}{4} f_{1} .
$$

- The metric behaves as

Solution - metric part

$$
\begin{aligned}
d s^{2} & =\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right), \\
\Psi_{1}(r) & =\Psi_{2}(r)=1-\frac{2 m}{r}-\frac{2 f_{1} \kappa_{\mathrm{sh}}^{2}}{r^{2}} .
\end{aligned}
$$

New solution only with shears

- By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

$$
f_{2}=-\frac{1}{4} f_{1} .
$$

- The metric behaves as

Solution - metric part

$$
\begin{aligned}
d s^{2} & =\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right), \\
\Psi_{1}(r) & =\Psi_{2}(r)=1-\frac{2 m}{r}-\frac{2 f_{1} \kappa_{\mathrm{sh}}^{2}}{r^{2}} .
\end{aligned}
$$

New solution only with shears

- By plugging these conditions in the field equations, there are several branches but only one has solutions with dynamical shears. This branch involves the constants of the theory as

$$
f_{2}=-\frac{1}{4} f_{1}
$$

- The metric behaves as

Solution - metric part

$$
\begin{aligned}
d s^{2} & =\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right) \\
\Psi_{1}(r) & =\Psi_{2}(r)=1-\frac{2 m}{r}-\frac{2 f_{1} \kappa_{\mathrm{sh}}^{2}}{r^{2}}
\end{aligned}
$$

Here, $\kappa_{\text {sh }}$ is interpreted as a new charge, "shear charge".

- See our paper to see the form of q_{i} and t_{i}. One component of nonmetricity is arbitrary (problem?).

Reissner-Nordström-like solutions with spin, dilation and shear charges

- After finding the shear part alone, we found a theory containing our previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second (with only shears).

Reissner-Nordström-like solutions with spin, dilation and shear charges

- After finding the shear part alone, we found a theory containing our previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second (with only shears).
- The action of the full model is

$$
\begin{aligned}
S= & \frac{1}{64 \pi} \int\left[-4 R-6 d_{1} \tilde{R}_{\lambda[\rho \mu \nu]} \tilde{R}^{\lambda[\rho \mu \nu]}-9 d_{1} \tilde{R}_{\lambda[\rho \mu \nu]} \tilde{R}^{\mu[\lambda \nu \rho]}\right. \\
& +2 d_{1}\left(\tilde{R}_{[\mu \nu]}+\hat{R}_{[\mu \nu]}\right)\left(\tilde{R}^{[\mu \nu]}+\hat{R}^{[\mu \nu]}\right)+18 d_{1} \tilde{R}_{\lambda[\rho \mu \nu]} \tilde{R}^{(\lambda \rho) \mu \nu} \\
& -3 d_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \rho) \mu \nu}+6 d_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \mu) \rho \nu}+2\left(2 e_{1}-f_{1}\right) \tilde{R}^{\lambda} \lambda_{\lambda \mu \nu} \tilde{R}^{\rho}{ }_{\rho}{ }^{\mu \nu} \\
& +8 f_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \rho) \mu \nu}-2 f_{1}\left(\tilde{R}_{(\mu \nu)}-\hat{R}_{(\mu \nu)}\right)\left(\tilde{R}^{(\mu \nu)}-\hat{R}^{(\mu \nu)}\right) \\
& \left.+3\left(1-2 a_{2}\right) T_{[\lambda \mu \nu]} T^{[\lambda \mu \nu]}\right] d^{4} x \sqrt{-g} .
\end{aligned}
$$

Reissner-Nordström-like solutions with spin, dilation and shear charges

- After finding the shear part alone, we found a theory containing our previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second (with only shears).
- The action of the full model is

$$
\begin{aligned}
S= & \frac{1}{64 \pi} \int\left[-4 R-6 d_{1} \tilde{R}_{\lambda[\rho \mu \nu]} \tilde{R}^{\lambda[\rho \mu \nu]}-9 d_{1} \tilde{R}_{\lambda[\rho \mu \nu]} \tilde{R}^{\mu[\lambda \nu \rho]}\right. \\
& +2 d_{1}\left(\tilde{R}_{[\mu \nu]}+\hat{R}_{[\mu \nu]}\right)\left(\tilde{R}^{[\mu \nu]}+\hat{R}^{[\mu \nu]}\right)+18 d_{1} \tilde{R}_{\lambda[\rho \mu \nu]} \tilde{R}^{(\lambda \rho) \mu \nu} \\
& -3 d_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \rho) \mu \nu}+6 d_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \mu) \rho \nu}+2\left(2 e_{1}-f_{1}\right) \tilde{R}^{\lambda}{ }_{\lambda \mu \nu} \tilde{R}_{\rho}{ }_{\rho}{ }^{\mu \nu} \\
& +8 f_{1} \tilde{R}_{(\lambda \rho) \mu \nu} \tilde{R}^{(\lambda \rho) \mu \nu}-2 f_{1}\left(\tilde{R}_{(\mu \nu)}-\hat{R}_{(\mu \nu)}\right)\left(\tilde{R}^{(\mu \nu)}-\hat{R}^{(\mu \nu)}\right) \\
& \left.+3\left(1-2 a_{2}\right) T_{[\lambda \mu \nu]} T^{[\lambda \mu \nu]}\right] d^{4} x \sqrt{-g} .
\end{aligned}
$$

- When traceless part of nonmetricity is zero, the above action coincides with our previous study.

Reissner-Nordström-like solutions with spin, dilation and shear charges

- Since we already found the solution for each model independently, it was not so difficult to find the solution for the full model.

Reissner-Nordström-like solutions with spin, dilation and shear charges

- Since we already found the solution for each model independently, it was not so difficult to find the solution for the full model.
- In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free). See our paper to see the form of q_{i}, t_{i} and the field strength tensors in the irreducible modes.

Reissner-Nordström-like solutions with spin, dilation and shear charges

- Since we already found the solution for each model independently, it was not so difficult to find the solution for the full model.
- In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free). See our paper to see the form of q_{i}, t_{i} and the field strength tensors in the irreducible modes.
- The solution gives us the following metric

Reissner-Nordström-like solutions with spin, dilation and shear charges

- Since we already found the solution for each model independently, it was not so difficult to find the solution for the full model.
- In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free). See our paper to see the form of q_{i}, t_{i} and the field strength tensors in the irreducible modes.
- The solution gives us the following metric

Solution General - metric part

$$
\begin{aligned}
d s^{2} & =\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right), \\
\Psi_{1}(r) & =\Psi_{2}(r)=1-\frac{2 m}{r}+\frac{d_{1} \kappa_{\mathrm{s}}^{2}-4 e_{1} \kappa_{\mathrm{d}}^{2}-2 f_{1} \kappa_{\mathrm{sh}}^{2}}{r^{2}},
\end{aligned}
$$

Reissner-Nordström-like solutions with spin, dilation and shear charges

- Since we already found the solution for each model independently, it was not so difficult to find the solution for the full model.
- In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free). See our paper to see the form of q_{i}, t_{i} and the field strength tensors in the irreducible modes.
- The solution gives us the following metric

Solution General - metric part

$$
\begin{aligned}
d s^{2} & =\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right), \\
\Psi_{1}(r) & =\Psi_{2}(r)=1-\frac{2 m}{r}+\frac{d_{1} \kappa_{\mathrm{s}}^{2}-4 e_{1} \kappa_{\mathrm{d}}^{2}-2 f_{1} \kappa_{\mathrm{sh}}^{2}}{r^{2}},
\end{aligned}
$$

Reissner-Nordström-like solutions with spin, dilation and shear charges

- Since we already found the solution for each model independently, it was not so difficult to find the solution for the full model.
- In this case, all nonmetricity components are fully set by the field equations (remember that in the shear case, one component was free). See our paper to see the form of q_{i}, t_{i} and the field strength tensors in the irreducible modes.
- The solution gives us the following metric

Solution General - metric part

$$
\begin{aligned}
d s^{2} & =\Psi_{1}(r) d t^{2}-\frac{d r^{2}}{\Psi_{2}(r)}-r^{2}\left(d \theta_{1}^{2}+\sin ^{2} \theta_{1} d \theta_{2}^{2}\right) \\
\Psi_{1}(r) & =\Psi_{2}(r)=1-\frac{2 m}{r}+\frac{d_{1} \kappa_{\mathrm{s}}^{2}-4 e_{1} \kappa_{\mathrm{d}}^{2}-2 f_{1} \kappa_{\mathrm{sh}}^{2}}{r^{2}}
\end{aligned}
$$

having the three possible charges of MAG: spin, dilation and shear.

On the other hand, the solution can also be trivially generalised to include the cosmological constant and Coulomb electromagnetic fields with electric and magnetic charges q_{e} and q_{m}, which are decoupled from torsion under the assumption of the minimal coupling principle. This natural extension is then described by a Reissner-Nordström-de Sitter-like geometry

Solution General - metric part

$$
\Psi(r)=1-\frac{2 m}{r}+\frac{d_{1} \kappa_{\mathrm{s}}^{2}-4 e_{1} \kappa_{\mathrm{d}}^{2}-2 f_{1} \kappa_{\mathrm{sh}}^{2}+q_{e}^{2}+q_{m}^{2}}{r^{2}}+\frac{\Lambda}{3} r^{2},
$$

which turns out to represent the broadest family of static and spherically symmetric black hole solutions obtained in MAG so far.

What do these charges physically represent? - Torsion

- Torsion part $T^{\lambda}{ }_{\mu \nu}$:

What do these charges physically represent? - Torsion

- Torsion part $T^{\lambda}{ }_{\mu \nu}$:
(Intrinsic spin generates gravitation. This effect does not exist in GR.

What do these charges physically represent? - Torsion

- Torsion part $T^{\lambda}{ }_{\mu \nu}$:
- Intrinsic spin generates gravitation. This effect does not exist in GR.
(2) We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not in GR?

What do these charges physically represent? - Torsion

- Torsion part $T^{\lambda}{ }_{\mu \nu}$:
(Intrinsic spin generates gravitation. This effect does not exist in GR.
(2) We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not in GR?
(3) The solution is in vacuum and a charge κ_{s} appears (spin charge). Analogue to the case of Schwarzschild where the mass M appears.

What do these charges physically represent? - Torsion

- Torsion part $T^{\lambda}{ }_{\mu \nu}$:
(1) Intrinsic spin generates gravitation. This effect does not exist in GR.
(2) We know that the spin is a fundamental property of particles. Since their masses contribute to gravity, why their spin do not in GR?
(3) The solution is in vacuum and a charge κ_{s} appears (spin charge). Analogue to the case of Schwarzschild where the mass M appears.
(a) We expect that the spin charge might be important in certain astrophysical scenarios such as: highly mangnetized neutron stars; supermassive black holes with endowed spin.

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
- Intrinsic dilations generates gravitation. This effect does not exist in GR.

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
- Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
- Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
(3) Weyl part of nonmetricity is "scale invariant"

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
(1) Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
(3) Weyl part of nonmetricity is "scale invariant"
- Nonmetricity part - Traceless part $\mathscr{Q}_{\lambda \mu \nu}$:

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
(1) Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
(3) Weyl part of nonmetricity is "scale invariant"
- Nonmetricity part - Traceless part $Q_{\lambda \mu \nu}$:
- Intrinsic shears generates gravitation. This effect does not exist in GR.

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
- Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
(3) Weyl part of nonmetricity is "scale invariant"
- Nonmetricity part - Traceless part $Q_{\lambda \mu \nu}$:
- Intrinsic shears generates gravitation. This effect does not exist in GR.
(2) Shears: Deformations without changing the volume.

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
- Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
(3) Weyl part of nonmetricity is "scale invariant"
- Nonmetricity part - Traceless part $Q_{\lambda \mu \nu}$:
(Intrinsic shears generates gravitation. This effect does not exist in GR.
(2) Shears: Deformations without changing the volume.
- Solution: κ_{d} and $\kappa_{\text {sh }}$ appear which are the dilation and shear charges. Analogue to the case of Schwarzschild M.

What do these charges physically represent? - Nonmetricity

- Nonmetricity part - only Weyl W_{μ} :
- Intrinsic dilations generates gravitation. This effect does not exist in GR.
(2) dilation: deformation that involves only change of volume (in this case, intrinsic dilation!)
(3) Weyl part of nonmetricity is "scale invariant"
- Nonmetricity part - Traceless part $Q_{\lambda \mu \nu}$:
(Intrinsic shears generates gravitation. This effect does not exist in GR.
(2) Shears: Deformations without changing the volume.
- Solution: κ_{d} and $\kappa_{\text {sh }}$ appear which are the dilation and shear charges. Analogue to the case of Schwarzschild M.
- Do all particles in nature have different dilations and shears? are these properties important in particle physics?

Conclusions and what do to next

- We found the first solution with the traceless part of nonmetricity having a dynamical role where the shear charge appears in the metric.

Conclusions and what do to next

- We found the first solution with the traceless part of nonmetricity having a dynamical role where the shear charge appears in the metric.
- The general solution contains the three fundamental charges (spin, dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.

Conclusions and what do to next

- We found the first solution with the traceless part of nonmetricity having a dynamical role where the shear charge appears in the metric.
- The general solution contains the three fundamental charges (spin,dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.
- It is worth studying:

Conclusions and what do to next

- We found the first solution with the traceless part of nonmetricity having a dynamical role where the shear charge appears in the metric.
- The general solution contains the three fundamental charges (spin,dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.
- It is worth studying:
(Cosmology of the complete model: from inflation to dark energy.

Conclusions and what do to next

- We found the first solution with the traceless part of nonmetricity having a dynamical role where the shear charge appears in the metric.
- The general solution contains the three fundamental charges (spin,dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.
- It is worth studying:
(Cosmology of the complete model: from inflation to dark energy.
(2) Perturbations of this solution: Is it stable? quasinormal modes?

Conclusions and what do to next

- We found the first solution with the traceless part of nonmetricity having a dynamical role where the shear charge appears in the metric.
- The general solution contains the three fundamental charges (spin,dilation and shear) and the mass which constitute the most general spherically symmetric solution with all the possible intrinsic geometrical properties of matter.
- It is worth studying:
(Cosmology of the complete model: from inflation to dark energy.
(2) Perturbations of this solution: Is it stable? quasinormal modes?
(3) What is the role of dilations/shears in particle physics?

